新兴的边缘情报应用程序要求服务器重新训练和更新部署在远程边缘节点上的深神经网络,以利用新收集的数据示例。不幸的是,由于高度严格的通信资源,在实践中可能不可能连续向这些边缘节点发送全面更新的权重。在本文中,我们提出了重量的深层部分更新范式,该范式巧妙地选择了一小部分权重以在每个服务器到边缘通信中进行更新,同时与完整更新相比实现了相似的性能。我们的方法是通过分析上限的部分更新和完整更新之间的损失差异来建立的,并且只能更新权重,从而对上限产生最大的贡献。广泛的实验结果证明了我们部分更新方法的功效,该方法在更新少量的权重的同时,可以达到高推理精度。
translated by 谷歌翻译
边缘设备上有限且动态的资源激励我们部署优化的深神经网络,该网络可以调整其子网络以适应不同的资源约束。但是,现有作品通常通过在手工制作的采样空间中搜索不同的网络体系结构来构建子网络,这不仅可以导致低标准的性能,而且可能导致设备上的重新配置开销。在本文中,我们提出了一种新颖的培训算法,动态的实时稀疏子网(着装)。着装通过基于行的非结构化稀疏度从相同的骨干网络采样多个子网络,并与加权损失并联训练这些子网络。着装还利用包括参数重复使用和基于行的细粒抽样在内的策略,以进行有效的存储消耗和有效的机上适应。公共视觉数据集的广泛实验表明,与最先进的子网络相比,着装的准确性明显更高。
translated by 谷歌翻译
IoT设备收集的数据通常是私人的,并且在各种用户之间具有巨大的多样性。因此,学习需要使用可用的代表性数据样本进行预训练,在物联网设备上部署预训练的模型,并使用本地数据在设备上调整已部署的模型。这种用于深度学习授权应用程序的设备改编需要数据和记忆效率。但是,现有的基于梯度的元学习方案无法支持记忆有效的适应。为此,我们提出了P-Meta,这是一种新的元学习方法,该方法可以强制执行结构的部分参数更新,同时确保快速概括到看不见的任务。对几片图像分类和强化学习任务的评估表明,与最先进的几次适应方法相比。
translated by 谷歌翻译
深度神经网络(DNN)的记录断裂性能具有沉重的参数化,导致外部动态随机存取存储器(DRAM)进行存储。 DRAM访问的禁用能量使得在资源受限的设备上部署DNN是不普遍的,呼叫最小化重量和数据移动以提高能量效率。我们呈现SmartDeal(SD),算法框架,以进行更高成本的存储器存储/访问的较低成本计算,以便在推理和培训中积极提高存储和能量效率。 SD的核心是一种具有结构约束的新型重量分解,精心制作以释放硬件效率潜力。具体地,我们将每个重量张量分解为小基矩阵的乘积以及大的结构稀疏系数矩阵,其非零被量化为-2的功率。由此产生的稀疏和量化的DNN致力于为数据移动和重量存储而大大降低的能量,因为由于稀疏的比特 - 操作和成本良好的计算,恢复原始权重的最小开销。除了推理之外,我们采取了另一次飞跃来拥抱节能培训,引入创新技术,以解决培训时出现的独特障碍,同时保留SD结构。我们还设计专用硬件加速器,充分利用SD结构来提高实际能源效率和延迟。我们在不同的设置中对多个任务,模型和数据集进行实验。结果表明:1)应用于推理,SD可实现高达2.44倍的能效,通过实际硬件实现评估; 2)应用于培训,储存能量降低10.56倍,减少了10.56倍和4.48倍,与最先进的训练基线相比,可忽略的准确性损失。我们的源代码在线提供。
translated by 谷歌翻译
深度神经网络(DNN)在解决许多真实问题方面都有效。较大的DNN模型通常表现出更好的质量(例如,精度,精度),但它们的过度计算会导致长期推理时间。模型稀疏可以降低计算和内存成本,同时保持模型质量。大多数现有的稀疏算法是单向移除的重量,而其他人则随机或贪婪地探索每层进行修剪的小权重子集。这些算法的局限性降低了可实现的稀疏性水平。此外,许多算法仍然需要预先训练的密集模型,因此遭受大的内存占地面积。在本文中,我们提出了一种新颖的预定生长和修剪(间隙)方法,而无需预先培训密集模型。它通过反复生长一个层次的层来解决以前的作品的缺点,然后在一些训练后修剪回到稀疏。实验表明,使用所提出的方法修剪模型匹配或击败高度优化的密集模型的质量,在各种任务中以80%的稀疏度,例如图像分类,客观检测,3D对象分段和翻译。它们还优于模型稀疏的其他最先进的(SOTA)方法。作为一个例子,通过间隙获得的90%不均匀的稀疏resnet-50模型在想象中实现了77.9%的前1个精度,提高了先前的SOTA结果1.5%。所有代码将公开发布。
translated by 谷歌翻译
当可用的硬件无法满足内存和计算要求以有效地训练高性能的机器学习模型时,需要妥协训练质量或模型复杂性。在联合学习(FL)中,节点是比传统服务器级硬件更具限制的数量级,并且通常是电池供电的,严重限制了可以在此范式下训练的模型的复杂性。尽管大多数研究都集中在设计更好的聚合策略上以提高收敛速度并减轻FL的沟通成本,但更少的努力致力于加快设备培训。这样的阶段重复数百次(即每回合)并可能涉及数千个设备,这是培训联合模型所需的大部分时间,以及客户端的全部能源消耗。在这项工作中,我们介绍了第一个研究在FL工作负载中培训时间引入稀疏性时出现的独特方面的研究。然后,我们提出了Zerofl,该框架依赖于高度稀疏的操作来加快设备训练。与通过将最先进的稀疏训练框架适应FL设置相比,接受Zerofl和95%稀疏性训练的模型高达2.3%的精度。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
Neural network pruning has been a well-established compression technique to enable deep learning models on resource-constrained devices. The pruned model is usually specialized to meet specific hardware platforms and training tasks (defined as deployment scenarios). However, existing pruning approaches rely heavily on training data to trade off model size, efficiency, and accuracy, which becomes ineffective for federated learning (FL) over distributed and confidential datasets. Moreover, the memory- and compute-intensive pruning process of most existing approaches cannot be handled by most FL devices with resource limitations. In this paper, we develop FedTiny, a novel distributed pruning framework for FL, to obtain specialized tiny models for memory- and computing-constrained participating devices with confidential local data. To alleviate biased pruning due to unseen heterogeneous data over devices, FedTiny introduces an adaptive batch normalization (BN) selection module to adaptively obtain an initially pruned model to fit deployment scenarios. Besides, to further improve the initial pruning, FedTiny develops a lightweight progressive pruning module for local finer pruning under tight memory and computational budgets, where the pruning policy for each layer is gradually determined rather than evaluating the overall deep model structure. Extensive experimental results demonstrate the effectiveness of FedTiny, which outperforms state-of-the-art baseline approaches, especially when compressing deep models to extremely sparse tiny models.
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
Federated learning (FL) on deep neural networks facilitates new applications at the edge, especially for wearable and Internet-of-Thing devices. Such devices capture a large and diverse amount of data, but they have memory, compute, power, and connectivity constraints which hinder their participation in FL. We propose Centaur, a multitier FL framework, enabling ultra-constrained devices to efficiently participate in FL on large neural nets. Centaur combines two major ideas: (i) a data selection scheme to choose a portion of samples that accelerates the learning, and (ii) a partition-based training algorithm that integrates both constrained and powerful devices owned by the same user. Evaluations, on four benchmark neural nets and three datasets, show that Centaur gains ~10% higher accuracy than local training on constrained devices with ~58% energy saving on average. Our experimental results also demonstrate the superior efficiency of Centaur when dealing with imbalanced data, client participation heterogeneity, and various network connection probabilities.
translated by 谷歌翻译
Emerging technologies and applications including Internet of Things (IoT), social networking, and crowd-sourcing generate large amounts of data at the network edge. Machine learning models are often built from the collected data, to enable the detection, classification, and prediction of future events. Due to bandwidth, storage, and privacy concerns, it is often impractical to send all the data to a centralized location. In this paper, we consider the problem of learning model parameters from data distributed across multiple edge nodes, without sending raw data to a centralized place. Our focus is on a generic class of machine learning models that are trained using gradientdescent based approaches. We analyze the convergence bound of distributed gradient descent from a theoretical point of view, based on which we propose a control algorithm that determines the best trade-off between local update and global parameter aggregation to minimize the loss function under a given resource budget. The performance of the proposed algorithm is evaluated via extensive experiments with real datasets, both on a networked prototype system and in a larger-scale simulated environment. The experimentation results show that our proposed approach performs near to the optimum with various machine learning models and different data distributions.
translated by 谷歌翻译
Deep Neural Networks (DNNs) have been ubiquitously adopted in internet of things and are becoming an integral of our daily life. When tackling the evolving learning tasks in real world, such as classifying different types of objects, DNNs face the challenge to continually retrain themselves according to the tasks on different edge devices. Federated continual learning is a promising technique that offers partial solutions but yet to overcome the following difficulties: the significant accuracy loss due to the limited on-device processing, the negative knowledge transfer caused by the limited communication of non-IID data, and the limited scalability on the tasks and edge devices. In this paper, we propose FedKNOW, an accurate and scalable federated continual learning framework, via a novel concept of signature task knowledge. FedKNOW is a client side solution that continuously extracts and integrates the knowledge of signature tasks which are highly influenced by the current task. Each client of FedKNOW is composed of a knowledge extractor, a gradient restorer and, most importantly, a gradient integrator. Upon training for a new task, the gradient integrator ensures the prevention of catastrophic forgetting and mitigation of negative knowledge transfer by effectively combining signature tasks identified from the past local tasks and other clients' current tasks through the global model. We implement FedKNOW in PyTorch and extensively evaluate it against state-of-the-art techniques using popular federated continual learning benchmarks. Extensive evaluation results on heterogeneous edge devices show that FedKNOW improves model accuracy by 63.24% without increasing model training time, reduces communication cost by 34.28%, and achieves more improvements under difficult scenarios such as large numbers of tasks or clients, and training different complex networks.
translated by 谷歌翻译
在基于典型的深度神经网络训练期间,所有模型的参数都在每次迭代时更新。最近的工作表明,在训练期间只能更新模型参数的小型子集,这可以减轻存储和通信要求。在本文中,我们表明,可以在模型的参数上诱导一个固定的稀疏掩码,该屏蔽选择要在许多迭代中更新的子集。我们的方法用最大的Fisher信息构造出k $参数的掩码,作为一个简单的近似,与手头的任务最重要的近似值。在参数高效转移学习和分布式培训的实验中,我们表明我们的方法与其他方法的性能相匹配或超出稀疏更新的其他方法的性能,同时在内存使用和通信成本方面更有效。我们公开发布我们的代码,以促进我们的方法的进一步应用。
translated by 谷歌翻译
Federated Learning allows multiple parties to jointly train a deep learning model on their combined data, without any of the participants having to reveal their local data to a centralized server. This form of privacy-preserving collaborative learning however comes at the cost of a significant communication overhead during training. To address this problem, several compression methods have been proposed in the distributed training literature that can reduce the amount of required communication by up to three orders of magnitude. These existing methods however are only of limited utility in the Federated Learning setting, as they either only compress the upstream communication from the clients to the server (leaving the downstream communication uncompressed) or only perform well under idealized conditions such as iid distribution of the client data, which typically can not be found in Federated Learning. In this work, we propose Sparse Ternary Compression (STC), a new compression framework that is specifically designed to meet the requirements of the Federated Learning environment. STC extends the existing compression technique of top-k gradient sparsification with a novel mechanism to enable downstream compression as well as ternarization and optimal Golomb encoding of the weight updates. Our experiments on four different learning tasks demonstrate that STC distinctively outperforms Federated Averaging in common Federated Learning scenarios where clients either a) hold non-iid data, b) use small batch sizes during training, or where c) the number of clients is large and the participation rate in every communication round is low. We furthermore show that even if the clients hold iid data and use medium sized batches for training, STC still behaves paretosuperior to Federated Averaging in the sense that it achieves fixed target accuracies on our benchmarks within both fewer training iterations and a smaller communication budget. These results advocate for a paradigm shift in Federated optimization towards high-frequency low-bitwidth communication, in particular in bandwidth-constrained learning environments.
translated by 谷歌翻译
最近,稀疏培训已成为有希望的范式,可在边缘设备上有效地深入学习。当前的研究主要致力于通过进一步增加模型稀疏性来降低培训成本。但是,增加的稀疏性并不总是理想的,因为它不可避免地会在极高的稀疏度下引入严重的准确性降解。本文打算探索其他可能的方向,以有效,有效地降低稀疏培训成本,同时保持准确性。为此,我们研究了两种技术,即层冻结和数据筛分。首先,层冻结方法在密集的模型训练和微调方面取得了成功,但在稀疏训练域中从未采用过。然而,稀疏训练的独特特征可能会阻碍层冻结技术的结合。因此,我们分析了在稀疏培训中使用层冻结技术的可行性和潜力,并发现它有可能节省大量培训成本。其次,我们提出了一种用于数据集有效培训的数据筛分方法,该方法通过确保在整个培训过程中仅使用部分数据集来进一步降低培训成本。我们表明,这两种技术都可以很好地整合到稀疏训练算法中,以形成一个通用框架,我们将其配置为SPFDE。我们的广泛实验表明,SPFDE可以显着降低培训成本,同时从三个维度中保留准确性:重量稀疏性,层冻结和数据集筛分。
translated by 谷歌翻译
联合学习(FL)可以培训全球模型,而无需共享存储在多个设备上的分散的原始数据以保护数据隐私。由于设备的能力多样化,FL框架难以解决Straggler效应和过时模型的问题。此外,数据异质性在FL训练过程中会导致全球模型的严重准确性降解。为了解决上述问题,我们提出了一个层次同步FL框架,即Fedhisyn。 Fedhisyn首先根据其计算能力将所有可​​用的设备簇分为少数类别。经过一定的本地培训间隔后,将不同类别培训的模型同时上传到中央服务器。在单个类别中,设备根据环形拓扑会相互传达局部更新的模型权重。随着环形拓扑中训练的效率更喜欢具有均匀资源的设备,基于计算能力的分类减轻了Straggler效应的影响。此外,多个类别的同步更新与单个类别中的设备通信的组合有助于解决数据异质性问题,同时达到高精度。我们评估了基于MNIST,EMNIST,CIFAR10和CIFAR100数据集的提议框架以及设备的不同异质设置。实验结果表明,在训练准确性和效率方面,Fedhisyn的表现优于六种基线方法,例如FedAvg,脚手架和Fedat。
translated by 谷歌翻译
深度学习在许多应用中取得了巨大成功。然而,其在实践中的部署已经受到两个问题的困扰:由于通常在地理上分布的大量数据传输,必须集中聚合的数据的隐私。解决这两个问题都是具有挑战性的,并且大多数现有工程无法提供有效的解决方案。在本文中,我们开发FEDPC,是隐私保存和沟通效率的联邦深度学习框架。该框架允许在多个私有数据集中学习模型,同时不显示培训数据的任何信息,即使是中间数据。该框架还可以最大限度地减少更新模型的数据量。我们正式证明培训FEDPC及其隐私保留财产时学习模型的融合。我们对大量实验进行了广泛的实验,以评估FEDPC的性能,以近似到上限的性能(培训集中时)和通信开销。结果表明,当数据分配到10个计算节点时,FEDPC在8.5 \%$ 8.5 \%$ 8.5 \%$ 8.5 \%$ 8.5 \%$ 8.5 \%$ 8.5 \%。与现有工程相比,FEDPC还将通信开销降低至42.20±20美元。
translated by 谷歌翻译
联合学习(FL)是一个新的人工智能概念,它使得互联网(IoT)设备能够学习协作模型,而无需将原始数据发送到集中的节点进行处理。尽管有许多优势,但在物联网设备上的计算资源较低,交换模型参数的高通信成本使得FL在大型物联网网络中的应用非常有限。在这项工作中,我们为非常大的物联网网络开发了一种新型的FL压缩方案,称为高压联合学习(HCFL)。 HCFL可以减少FL过程的数据负载,而无需更改其结构和超参数。通过这种方式,我们不仅可以显着降低沟通成本,而且使密集学习过程更适应低计算资源的物联网设备。此外,我们研究了IoT设备数量与FL模型的收敛水平之间的关系,从而更好地评估了FL过程的质量。我们在模拟和数学分析中演示了HCFL方案。我们提出的理论研究可以用作最低满意度的水平,证明在满足确定的配置时,FL过程可以实现良好的性能。因此,我们表明HCFL适用于具有许多物联网设备的任何FLENTECTED网络。
translated by 谷歌翻译
机器学习模型已在移动网络中部署,以处理来自不同层的数据,以实现自动化网络管理和设备的智能。为了克服集中式机器学习的高度沟通成本和严重的隐私问题,已提出联合学习(FL)来实现网络设备之间的分布式机器学习。虽然在FL中广泛研究了计算和通信限制,但仍未探索设备存储对FL性能的影响。如果没有有效有效的数据选择政策来过滤设备上的大量流媒体数据,经典FL可能会遭受更长的模型训练时间(超过$ 4 \ times $)和显着的推理准确性(超过$ 7 \%\%$),则遭受了损失,观察到了。在我们的实验中。在这项工作中,我们迈出了第一步,考虑使用有限的在设备存储的FL的在线数据选择。我们首先定义了一个新的数据评估度量,以在FL中进行数据选择:在设备数据样本上,局部梯度在所有设备的数据上投影到全球梯度上。我们进一步设计\ textbf {ode},一个\ textbf {o} nline \ textbf {d} ata s \ textbf {e textbf {e} fl for f for fl f textbf {o}的框架,用于协作网络设备,以协作存储有价值的数据示例,并保证用于快速的理论保证同时提高模型收敛并增强最终模型精度。一项工业任务(移动网络流量分类)和三个公共任务(综合任务,图像分类,人类活动识别)的实验结果显示了ODE的显着优势,而不是最先进的方法。特别是,在工业数据集上,ODE的成就高达$ 2.5 \ times $ $加速的培训时间和6美元的最终推理准确性增加,并且在实践环境中对各种因素都有强大的态度。
translated by 谷歌翻译
State-of-the-art performance for many emerging edge applications is achieved by deep neural networks (DNNs). Often, these DNNs are location and time sensitive, and the parameters of a specific DNN must be delivered from an edge server to the edge device rapidly and efficiently to carry out time-sensitive inference tasks. In this paper, we introduce AirNet, a novel training and transmission method that allows efficient wireless delivery of DNNs under stringent transmit power and latency constraints. We first train the DNN with noise injection to counter the wireless channel noise. Then we employ pruning to reduce the network size to the available channel bandwidth, and perform knowledge distillation from a larger model to achieve satisfactory performance, despite pruning. We show that AirNet achieves significantly higher test accuracy compared to digital alternatives under the same bandwidth and power constraints. The accuracy of the network at the receiver also exhibits graceful degradation with channel quality, which reduces the requirement for accurate channel estimation. We further improve the performance of AirNet by pruning the network below the available bandwidth, and using channel expansion to provide better robustness against channel noise. We also benefit from unequal error protection (UEP) by selectively expanding more important layers of the network. Finally, we develop an ensemble training approach, which trains a whole spectrum of DNNs, each of which can be used at different channel condition, resolving the impractical memory requirements.
translated by 谷歌翻译