大规模的神经网络具有相当大的表现力。它们非常适合工业应用中的复杂学习任务。但是,在当前联邦学习(FL)范式下,大型模型对训练构成了重大挑战。现有的有效FL训练的方法通常利用模型参数辍学。但是,操纵单个模型参数不仅在训练大规模FL模型时有意义地减少通信开销效率低下,而且还可能不利于缩放工作和模型性能,如最近的研究所示。为了解决这些问题,我们提出了联合的机会障碍辍学方法(FEDOBD)方法。关键的新颖性是,它将大规模模型分解为语义块,以便FL参与者可以机会上传量化的块,这些块被认为对训练该模型非常重要,以供FL服务器进行聚合。基于多个现实世界数据集的五种最先进方法评估FEDOBD的广泛实验表明,与最佳性能基线方法相比,它将整体通信开销降低了70%以上,同时达到了最高的测试准确性。据我们所知,FEDOBD是在块级别而不是在单个参数级别上执行FL模型上辍学的第一种方法。
translated by 谷歌翻译
作为一种有希望的隐私机器学习方法,联合学习(FL)可以使客户跨客户培训,而不会损害其机密的本地数据。但是,现有的FL方法遇到了不均分布数据的推理性能低的问题,因为它们中的大多数依赖于联合平均(FIDAVG)基于联合的聚合。通过以粗略的方式平均模型参数,FedAvg将局部模型的个体特征黯然失色,这极大地限制了FL的推理能力。更糟糕的是,在每一轮FL培训中,FedAvg向客户端向客户派遣了相同的初始本地模型,这很容易导致对最佳全局模型的局限性搜索。为了解决上述问题,本文提出了一种新颖有效的FL范式,名为FEDMR(联合模型重组)。与传统的基于FedAvg的方法不同,FEDMR的云服务器将收集到的本地型号的每一层层混合,并重组它们以实现新的模型,以供客户端培训。由于在每场FL比赛中进行了细粒度的模型重组和本地培训,FEDMR可以迅速为所有客户找出一个全球最佳模型。全面的实验结果表明,与最先进的FL方法相比,FEDMR可以显着提高推理准确性而不会引起额外的通信开销。
translated by 谷歌翻译
联合学习(FL)是一种强大的技术,用于以隐私保留方式从来自多个客户端的数据训练服务器上的模型。在FL中,服务器将模型发送到每个客户端,然后在本地培训模型并将其发送回服务器。服务器聚合更新的模型,并重复几轮的过程。 FL突出了显着的通信成本,特别是在将更新的本地模型从客户端发送回服务器时。最近提出的算法量化了模型参数,以有效地压缩流动。这些算法通常具有控制压缩因子的量化水平。我们发现量化水平的动态调整可以促进压缩而不会牺牲模型质量。首先,我们介绍了一种时间自适应量化算法,其随着训练的进展而增加量化级别。其次,我们介绍了一种客户自适应量化算法,该算法在每一轮中分配每个单独的客户端最佳量化级别。最后,我们将这两种算法与双自适应量化算法相结合。我们的实验表明,DadaQuant一贯改善客户$ \ lightarrow $服务器压缩,优于最强的非自适应基线,最高可达2.8美元。
translated by 谷歌翻译
联合学习(FL)是一个新的人工智能概念,它使得互联网(IoT)设备能够学习协作模型,而无需将原始数据发送到集中的节点进行处理。尽管有许多优势,但在物联网设备上的计算资源较低,交换模型参数的高通信成本使得FL在大型物联网网络中的应用非常有限。在这项工作中,我们为非常大的物联网网络开发了一种新型的FL压缩方案,称为高压联合学习(HCFL)。 HCFL可以减少FL过程的数据负载,而无需更改其结构和超参数。通过这种方式,我们不仅可以显着降低沟通成本,而且使密集学习过程更适应低计算资源的物联网设备。此外,我们研究了IoT设备数量与FL模型的收敛水平之间的关系,从而更好地评估了FL过程的质量。我们在模拟和数学分析中演示了HCFL方案。我们提出的理论研究可以用作最低满意度的水平,证明在满足确定的配置时,FL过程可以实现良好的性能。因此,我们表明HCFL适用于具有许多物联网设备的任何FLENTECTED网络。
translated by 谷歌翻译
分布式深度学习框架,如联合学习(FL)及其变体都是在广泛的Web客户端和移动/ IOT设备上实现个性化体验。然而,由于模型参数的爆炸增长(例如,十亿参数模型),基于FL的框架受到客户的计算资源的限制。拆分学习(SL),最近的框架,通过拆分客户端和服务器之间的模型培训来减少客户端计算负载。这种灵活性对于低计算设置非常有用,但通常以带宽消耗的增加成本而实现,并且可能导致次优化会聚,尤其是当客户数据异构时。在这项工作中,我们介绍了adasplit,通过降低带宽消耗并提高异构客户端的性能,使得能够将SL有效地缩放到低资源场景。为了捕获和基准的分布式深度学习的多维性质,我们还介绍了C3分数,是评估资源预算下的性能。我们通过与强大联邦和分裂学习基线的大量实验比较进行了大量实验比较,验证了adasplit在有限的资源下的有效性。我们还展示了adasplit中关键设计选择的敏感性分析,该选择验证了adasplit在可变资源预算中提供适应性权衡的能力。
translated by 谷歌翻译
个性化联合学习(FL)是佛罗里达州的一个新兴研究领域,在客户之间存在数据异质性的情况下,可以学习一个易于适应的全球模型。但是,个性化FL的主要挑战之一是,由于客户数据与服务器隔离以确保隐私,因此非常依赖客户的计算资源来计算高阶梯度。为了解决这个问题,我们专注于服务器可以独立于客户数据独立于客户数据的问题设置,这是各种应用程序中普遍的问题设置,但在现有文献中相对尚未探索。具体而言,我们提出了FedSim,这是一种针对个性化FL的新方法,该方法积极利用此类服务​​器数据来改善服务器中的元梯度计算以提高个性化性能。在实验上,我们通过各种基准和消融证明了FEDSIM在准确性方面优于现有方法,通过计算服务器中的完整元梯度,在计算上更有效,并且收敛速度高达34.2%。
translated by 谷歌翻译
最近联合学习(FL)范式的潜在假设是本地模型通常与全局模型共享与全局模型相同的网络架构,这对于具有不同的硬件和基础架构的移动和IOT设备变得不切实际。可扩展的联合学习框架应该解决配备不同计算和通信功能的异构客户端。为此,本文提出了一种新的联合模型压缩框架,它将异构低级模型分配给客户端,然后将它们聚合到全局全级模型中。我们的解决方案使得能够培训具有不同计算复杂性的异构本地模型,并汇总单个全局模型。此外,FEDHM不仅降低了设备的计算复杂性,而且还通过使用低秩模型来降低通信成本。广泛的实验结果表明,我们提出的\ System在测试顶-1精度(平均精度4.6%的精度增益)方面优于现行修剪的液体方法,在各种异构流域下较小的型号尺寸(平均较小为1.5倍) 。
translated by 谷歌翻译
Federated learning (FL) allows multiple clients cooperatively train models without disclosing local data. However, the existing works fail to address all these practical concerns in FL: limited communication resources, dynamic network conditions and heterogeneous client properties, which slow down the convergence of FL. To tackle the above challenges, we propose a heterogeneity-aware FL framework, called FedCG, with adaptive client selection and gradient compression. Specifically, the parameter server (PS) selects a representative client subset considering statistical heterogeneity and sends the global model to them. After local training, these selected clients upload compressed model updates matching their capabilities to the PS for aggregation, which significantly alleviates the communication load and mitigates the straggler effect. We theoretically analyze the impact of both client selection and gradient compression on convergence performance. Guided by the derived convergence rate, we develop an iteration-based algorithm to jointly optimize client selection and compression ratio decision using submodular maximization and linear programming. Extensive experiments on both real-world prototypes and simulations show that FedCG can provide up to 5.3$\times$ speedup compared to other methods.
translated by 谷歌翻译
Unlike traditional distributed machine learning, federated learning stores data locally for training and then aggregates the models on the server, which solves the data security problem that may arise in traditional distributed machine learning. However, during the training process, the transmission of model parameters can impose a significant load on the network bandwidth. It has been pointed out that the vast majority of model parameters are redundant during model parameter transmission. In this paper, we explore the data distribution law of selected partial model parameters on this basis, and propose a deep hierarchical quantization compression algorithm, which further compresses the model and reduces the network load brought by data transmission through the hierarchical quantization of model parameters. And we adopt a dynamic sampling strategy for the selection of clients to accelerate the convergence of the model. Experimental results on different public datasets demonstrate the effectiveness of our algorithm.
translated by 谷歌翻译
联邦学习(FL)是一种分布式学习方法,它为医学机构提供了在全球模型中合作的前景,同时保留患者的隐私。尽管大多数医疗中心执行类似的医学成像任务,但它们的差异(例如专业,患者数量和设备)导致了独特的数据分布。数据异质性对FL和本地模型的个性化构成了挑战。在这项工作中,我们研究了FL生产中间半全球模型的一种自适应分层聚类方法,因此具有相似数据分布的客户有机会形成更专业的模型。我们的方法形成了几个群集,这些集群由具有最相似数据分布的客户端组成;然后,每个集群继续分开训练。在集群中,我们使用元学习来改善参与者模型的个性化。我们通过评估我们在HAM10K数据集上的建议方法和极端异质数据分布的HAM10K数据集上的我们提出的方法,将聚类方法与经典的FedAvg和集中式培训进行比较。我们的实验表明,与标准的FL方法相比,分类精度相比,异质分布的性能显着提高。此外,我们表明,如果在群集中应用,则模型会更快地收敛,并且仅使用一小部分数据,却优于集中式培训。
translated by 谷歌翻译
跨不同边缘设备(客户)局部数据的分布不均匀,导致模型训练缓慢,并降低了联合学习的准确性。幼稚的联合学习(FL)策略和大多数替代解决方案试图通过加权跨客户的深度学习模型来实现更多公平。这项工作介绍了在现实世界数据集中遇到的一种新颖的非IID类型,即集群键,其中客户组具有具有相似分布的本地数据,从而导致全局模型收敛到过度拟合的解决方案。为了处理非IID数据,尤其是群集串数据的数据,我们提出了FedDrl,这是一种新型的FL模型,它采用了深厚的强化学习来适应每个客户的影响因素(将用作聚合过程中的权重)。在一组联合数据集上进行了广泛的实验证实,拟议的FEDDR可以根据CIFAR-100数据集的平均平均为FedAvg和FedProx方法提高了有利的改进,例如,高达4.05%和2.17%。
translated by 谷歌翻译
由于参与客户的异构特征,联邦学习往往受到不稳定和缓慢的收敛。当客户参与比率低时,这种趋势加剧了,因为从每个轮的客户收集的信息容易更加不一致。为了解决挑战,我们提出了一种新的联合学习框架,这提高了服务器端聚合步骤的稳定性,这是通过将客户端发送与全局梯度估计的加速模型来引导本地梯度更新来实现的。我们的算法自然地聚合并将全局更新信息与没有额外的通信成本的参与者传达,并且不需要将过去的模型存储在客户端中。我们还规范了本地更新,以进一步降低偏差并提高本地更新的稳定性。我们根据各种设置执行了关于实际数据的全面实证研究,与最先进的方法相比,在准确性和通信效率方面表现出了拟议方法的显着性能,特别是具有低客户参与率。我们的代码可在https://github.com/ninigapa0 / fedagm获得
translated by 谷歌翻译
手持设备的广泛采用促进了新应用程序的快速增长。这些新应用程序中有几个采用机器学习模型来培训通常是私人且敏感的用户数据。联合学习使机器学习模型可以在每个手持设备上本地训练,同时仅将其神经元更新与服务器同步。虽然这使用户隐私,但技术扩展和软件的进步导致了具有不同性能功能的手持设备。这导致了联合学习任务的培训时间,该任务由一些低表现的Straggler设备决定,从本质上讲是整个培训过程的瓶颈。在这项工作中,我们旨在通过基于其性能和准确性反馈来动态形成散乱者的子模型来减轻联合学习的性能。为此,我们提供了不变的辍学,这是一种动态技术,该技术基于神经元更新阈值形成子模型。不变的辍学使用来自非straggler客户端的神经元更新,在每次训练期间为每个Straggler开发一个量身定制的子模型。所有相应的权重小于阈值的幅度均掉落。我们使用五个现实世界的移动客户端评估了不变的辍学。我们的评估表明,不变的辍学获得比最新有序辍学的最大准确性增益1.4%,同时减轻了散乱的性能瓶颈。
translated by 谷歌翻译
在联合学习(FL)的跨设备中,通过使用更新而不是潜在的私人数据来交换参数,具有低计算功率的客户培训常见的\ Line Break [4]机器模型。联合辍学(FD)是一种通过选择要在每个训练回合中更新的模型参数的\ emph {subset}来提高FL会话的通信效率的技术。但是,与标准FL相比,FD产生的精度较低,并且面对更长的收敛时间。在本文中,我们利用\ textit {编码理论}来增强FD,通过允许在每个客户端使用不同的子模型。我们还表明,通过仔细调整服务器学习率超级参数,我们可以达到更高的训练速度,同时也达到与无辍学案例相同的最终精度。对于EMNIST数据集,我们的机制达到了NO辍学案例最终准确性的99.6%,同时需要$ 2.43 \ tims $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
联合学习用于大量(数百万)边缘移动设备的机器学习模型的分散培训。它充满挑战,因为移动设备通常具有有限的通信带宽和本地计算资源。因此,提高联合学习的效率对于可扩展性和可用性至关重要。在本文中,我们建议利用部分训练的神经网络,该网络在整个训练过程中冻结了一部分模型参数,以降低对模型性能的影响几乎没有影响的通信成本。通过广泛的实验,我们经验证明,部分培训的神经网络(FEDPT)的联合学习可能导致卓越的通信准确性权衡,通信成本高达46美元,以小的准确度成本。我们的方法还实现了更快的培训,具有较小的内存占用空间,更好的效用,以便强​​大的差异隐私保证。对于推动设备上学习中的过度参数化的局限性,所提出的FEDPT方法可以特别有趣。
translated by 谷歌翻译
联合学习(FL)是一种新兴技术,用于协作训练全球机器学习模型,同时将数据局限于用户设备。FL实施实施的主要障碍是用户之间的非独立且相同的(非IID)数据分布,这会减慢收敛性和降低性能。为了解决这个基本问题,我们提出了一种方法(comfed),以增强客户端和服务器侧的整个培训过程。舒适的关键思想是同时利用客户端变量减少技术来促进服务器聚合和全局自适应更新技术以加速学习。我们在CIFAR-10分类任务上的实验表明,Comfed可以改善专用于非IID数据的最新算法。
translated by 谷歌翻译
在存在数据掠夺性保存问题的情况下,有效地在许多设备和资源限制上(尤其是在边缘设备上)的有效部署深度神经网络是最具挑战性的问题之一。传统方法已经演变为改善单个全球模型,同时保持每个本地培训数据分散(即数据杂质性),或者培训一个曾经是一个曾经是一个曾经是的网络,该网络支持多样化的建筑设置,以解决配备不同计算功能的异质系统(即模型杂种)。但是,很少的研究同时考虑了这两个方向。在这项工作中,我们提出了一个新颖的框架来考虑两种情况,即超级网训练联合会(FEDSUP),客户在该场景中发送和接收一条超级网,其中包含从本身中采样的所有可能的体系结构。它的灵感来自联邦学习模型聚合阶段(FL)中平均参数的启发,类似于超级网训练中的体重分享。具体而言,在FedSup框架中,训练单射击模型中广泛使用的重量分享方法与联邦学习的平均(FedAvg)结合在一起。在我们的框架下,我们通过将子模型发送给广播阶段的客户来降低沟通成本和培训间接费用,提出有效的算法(电子馈SUP)。我们展示了几种增强FL环境中超网训练的策略,并进行广泛的经验评估。结果框架被证明为在几个标准基准上的数据和模型杂质性的鲁棒性铺平了道路。
translated by 谷歌翻译
联合学习(FL)可以培训全球模型,而无需共享存储在多个设备上的分散的原始数据以保护数据隐私。由于设备的能力多样化,FL框架难以解决Straggler效应和过时模型的问题。此外,数据异质性在FL训练过程中会导致全球模型的严重准确性降解。为了解决上述问题,我们提出了一个层次同步FL框架,即Fedhisyn。 Fedhisyn首先根据其计算能力将所有可​​用的设备簇分为少数类别。经过一定的本地培训间隔后,将不同类别培训的模型同时上传到中央服务器。在单个类别中,设备根据环形拓扑会相互传达局部更新的模型权重。随着环形拓扑中训练的效率更喜欢具有均匀资源的设备,基于计算能力的分类减轻了Straggler效应的影响。此外,多个类别的同步更新与单个类别中的设备通信的组合有助于解决数据异质性问题,同时达到高精度。我们评估了基于MNIST,EMNIST,CIFAR10和CIFAR100数据集的提议框架以及设备的不同异质设置。实验结果表明,在训练准确性和效率方面,Fedhisyn的表现优于六种基线方法,例如FedAvg,脚手架和Fedat。
translated by 谷歌翻译
培训具有分布式数据的集中模型的联合学习工作流程越来越受欢迎。但是,直到最近,这是贡献具有类似计算能力的客户的领域。在边缘生成和处理的快速扩展IOT空间和数据正在鼓励更多地努力扩展联合学习以包括异构系统。以前的方法将较小模型分发给客户端,以蒸馏出本地数据的特性。但是,在客户端的大量本地数据仍然存在培训的问题。我们建议减少培训全球模型所需的本地数据量。我们通过将模型分成通用特征提取的下部和对本地数据的特性更敏感的上部来执行此操作。我们通过聚类本地数据并仅选择用于培训的最具代表性样本来培训上部所需的数据量。我们的实验表明,小于1%的本地数据可以通过我们的缝隙网络方法将客户数据的特征传输到全球模型。这些初步结果令人鼓舞的是,在计算资源有限的设备上缩短数据,持续减少数据,但这阻碍了对全球模型有助于贡献的关键信息。
translated by 谷歌翻译