许多现实世界数据可以建模为3D图,但是完全有效地包含3D信息的学习表示形式具有挑战性。现有方法要么使用部分3D信息,要么遭受过多的计算成本。为了完全有效地合并3D信息,我们提出了一个新的消息传递方案,该方案在1跳社区内运行。我们的方法通过实现全球和本地完整性来确保有关3D图的3D信息的完整性。值得注意的是,我们提出了重要的旋转角度来实现全球完整性。此外,我们证明我们的方法比先前的方法快。我们为我们的方法提供了严格的完整性证明和时间复杂性的分析。由于分子本质上是量子系统,我们通过梳理量子启发的基础函数和提出的消息传递方案来构建\下划线{com} plete {com} plete {com} plete {com} plete {e}。实验结果证明了COMENET的能力和效率,尤其是在数量和尺寸大小的现实数据集上。我们的代码作为DIG库的一部分公开可用(\ url {https://github.com/divelab/dig})。
translated by 谷歌翻译
我们考虑对具有3D结构的蛋白质的代表性学习。我们基于蛋白质结构构建3D图并开发图形网络以学习其表示形式。根据我们希望捕获的细节级别,可以在不同级别计算蛋白质表示,\ emph {e.g。},氨基酸,骨干或全原子水平。重要的是,不同级别之间存在层次关系。在这项工作中,我们建议开发一个新型的层次图网络(称为pronet)来捕获关系。我们的pronet非常灵活,可用于计算不同水平粒度的蛋白质表示。我们表明,鉴于完整的基本3D图网络,我们的PRONET表示在所有级别上也已完成。为了关闭循环,我们开发了一个完整有效的3D图网络,以用作基本模型,从而使我们的pronet完成。我们对多个下游任务进行实验。结果表明,PRONET优于大多数数据集上的最新方法。此外,结果表明,不同的下游任务可能需要不同级别的表示。我们的代码可作为DIG库的一部分(\ url {https://github.com/divelab/dig})。
translated by 谷歌翻译
我们考虑在编码晶体材料的周期图上的表示形式学习。与常规图不同,周期图由最小单位单元组成,该单元在3D空间中的常规晶格上重复出现。如何有效编码这些周期结构会带来常规图表学习中不存在的独特挑战。除了E(3)不变外,周期性的图表表示还需要定期不变。也就是说,学到的表示形式应该不变,因为它们是人为强加的。此外,需要明确捕获周期性重复模式,因为不同尺寸和方向的晶格可能对应于不同的材料。在这项工作中,我们提出了一个变压器体系结构,称为Matformer,以进行周期性图表学习。我们的拟合器设计为周期性不变,可以明确捕获重复模式。特别是,Matformer通过有效使用相邻细胞中相同原子之间的几何距离来编码周期模式。多个通用基准数据集的实验结果表明,我们的配合器的表现始终超过基线方法。此外,我们的结果证明了定期不变性和对晶体表示学习的明确重复模式编码的重要性。
translated by 谷歌翻译
Graph neural networks have recently achieved great successes in predicting quantum mechanical properties of molecules. These models represent a molecule as a graph using only the distance between atoms (nodes). They do not, however, consider the spatial direction from one atom to another, despite directional information playing a central role in empirical potentials for molecules, e.g. in angular potentials. To alleviate this limitation we propose directional message passing, in which we embed the messages passed between atoms instead of the atoms themselves. Each message is associated with a direction in coordinate space. These directional message embeddings are rotationally equivariant since the associated directions rotate with the molecule. We propose a message passing scheme analogous to belief propagation, which uses the directional information by transforming messages based on the angle between them. Additionally, we use spherical Bessel functions and spherical harmonics to construct theoretically well-founded, orthogonal representations that achieve better performance than the currently prevalent Gaussian radial basis representations while using fewer than 1 /4 of the parameters. We leverage these innovations to construct the directional message passing neural network (DimeNet). DimeNet outperforms previous GNNs on average by 76 % on MD17 and by 31 % on QM9. Our implementation is available online. 1
translated by 谷歌翻译
3D相关的电感偏见,例如翻译不变性和旋转率偏差,对于在3D原子图(例如分子)上运行的图形神经网络是必不可少的。受到变压器在各个领域的成功的启发,我们研究了如何将这些电感偏置纳入变压器。在本文中,我们提出了Equibrouner,这是一个图形神经网络,利用了变压器体系结构的强度,并结合了基于不可减至表示(IRREPS)的$ SE(3)/e(3)$ - 均值功能。 IRREPS在通道尺寸中的编码均值信息而不使图形结构复杂化。简单性使我们能够通过用eproimiant对应物替换原始操作来直接合并它们。此外,为了更好地适应3D图,我们提出了一种新颖的模棱两可的图形注意力,该图都考虑了内容和几何信息,例如IRRERPS特征中包含的相对位置。为了提高注意力的表现力,我们用多层感知器的注意力取代了点产品的注意力,并包括非线性消息传递。我们在两个量子性能预测数据集(QM9和OC20)上进行基准测试。对于QM9,在接受相同数据分区训练的模型中,Equibourer在12个回归任务中的11个中取得了最佳结果。对于OC20,在使用IS2RE数据和IS2RS数据的培训设置下,Equibourer对最先进的模型进行了改进。复制所有主要结果的代码将很快获得。
translated by 谷歌翻译
建模分子势能表面在科学中至关重要。图神经网络在该领域表现出了巨大的成功,尤其是那些使用旋转等级表示的人。但是,他们要么患有复杂的数学形式,要么缺乏理论支持和设计原则。为了避免使用模棱两可的表示,我们引入了一种新型的本地框架方法来分子表示学习并分析其表现力。借助框架上的框架和模棱两可的向量的投影,GNN可以将原子的局部环境映射到标量表示。也可以在框架上投影在本地环境中传递消息。我们进一步分析了何时以及如何构建此类本地框架。我们证明,当局部环境没有对称性时,局部框架总是存在的,就像分子动力学模拟中一样。对于对称分子,尽管只能构建退化框架,但我们发现,由于自由度降低,在某些常见情况下,局部框架方法仍可能达到高表达能力。仅使用标量表示,我们可以采用现有的简单和强大的GNN体系结构。我们的模型在实验中的表现优于一系列最先进的基线。更简单的体系结构也可以提高更高的可扩展性。与最快的基线相比,我们的模型仅需30%的推理时间。
translated by 谷歌翻译
群体模棱两可(例如,SE(3)均衡性)是科学的关键物理对称性,从经典和量子物理学到计算生物学。它可以在任意参考转换下实现强大而准确的预测。鉴于此,已经为将这种对称性编码为深神经网络而做出了巨大的努力,该网络已被证明可以提高下游任务的概括性能和数据效率。构建模棱两可的神经网络通常会带来高计算成本以确保表现力。因此,如何更好地折衷表现力和计算效率在模棱两可的深度学习模型的设计中起着核心作用。在本文中,我们提出了一个框架来构建可以有效地近似几何量的se(3)等效图神经网络。受差异几何形状和物理学的启发,我们向图形神经网络介绍了局部完整帧,因此可以将以给定订单的张量信息投射到框架上。构建本地框架以形成正常基础,以避免方向变性并确保完整性。由于框架仅是由跨产品操作构建的,因此我们的方法在计算上是有效的。我们在两个任务上评估我们的方法:牛顿力学建模和平衡分子构象的产生。广泛的实验结果表明,我们的模型在两种类型的数据集中达到了最佳或竞争性能。
translated by 谷歌翻译
没有标签的预处理分子表示模型是各种应用的基础。常规方法主要是处理2D分子图,并仅专注于2D任务,使其预验证的模型无法表征3D几何形状,因此对于下游3D任务有缺陷。在这项工作中,我们从完整而新颖的意义上处理了3D分子预处理。特别是,我们首先提议采用基于能量的模型作为预处理的骨干,该模型具有实现3D空间对称性的优点。然后,我们为力预测开发了节点级预处理损失,在此过程中,我们进一步利用了Riemann-Gaussian分布,以确保损失为E(3) - 不变,从而实现了更多的稳健性。此外,还利用了图形噪声量表预测任务,以进一步促进最终的性能。我们评估了从两个具有挑战性的3D基准:MD17和QM9的大规模3D数据集GEOM-QM9预测的模型。实验结果支持我们方法对当前最新预处理方法的更好疗效,并验证我们设计的有效性。
translated by 谷歌翻译
有效地预测分子相互作用具有通过多个数量级的加速分子动力学的可能性,从而彻底改变化学模拟。图表神经网络(GNNS)最近显示了这项任务的巨大成功,超越了基于固定分子核的经典方法。然而,它们仍然从理论角度出现非常有限,因为常规GNN不能区分某些类型的图表。在这项工作中,我们在理论和实践之间缩小了这种差距。我们表明,具有指示边缘嵌入和两个跳消息传递的GNN是必然的近似器,用于翻译的预测,并且等于排列和旋转。然后,我们利用这些见解和多种结构改进来提出通过神经网络(GemNet)的几何消息。我们展示了拟议的多次消融研究变化的好处。 GEMNET在Coll,MD17和OC20数据集上优于34%,41%和20%的先前模型,并在最具挑战性分子上表现尤其好。我们的实现可在线获取。
translated by 谷歌翻译
通过定向消息传递通过方向消息通过的图形神经网络最近在多个分子特性预测任务上设置了最先进的技术。然而,它们依赖于通常不可用的原子位置信息,并获得它通常非常昂贵甚至不可能。在本文中,我们提出了合成坐标,使得能够使用高级GNN而不需要真正的分子配置。我们提出了两个距离作为合成坐标:使用个性化PageRank的对称变体指定分子配置的粗糙范围和基于图的距离的距离界限。为了利用距离和角度信息,我们提出了一种将正常图形神经网络转换为定向MPNN的方法。我们表明,通过这种转变,我们可以将正常图形神经网络的误差减少55%在锌基准。我们还通过在SMP和DimeNet ++模型中纳入合成坐标,在锌和自由QM9上设定了最新技术。我们的实现可在线获取。
translated by 谷歌翻译
包括协调性信息,例如位置,力,速度或旋转在计算物理和化学中的许多任务中是重要的。我们介绍了概括了等级图形网络的可控e(3)的等值图形神经网络(Segnns),使得节点和边缘属性不限于不变的标量,而是可以包含相协同信息,例如矢量或张量。该模型由可操纵的MLP组成,能够在消息和更新功能中包含几何和物理信息。通过可操纵节点属性的定义,MLP提供了一种新的Activation函数,以便与可转向功能字段一般使用。我们讨论我们的镜头通过等级的非线性卷曲镜头讨论我们的相关工作,进一步允许我们引脚点点的成功组件:非线性消息聚集在经典线性(可操纵)点卷积上改善;可操纵的消息在最近发送不变性消息的最近的等价图形网络上。我们展示了我们对计算物理学和化学的若干任务的方法的有效性,并提供了广泛的消融研究。
translated by 谷歌翻译
近年来,分子模拟数据集的出现是大数量级,更多样化的阶。这些新数据集在复杂性的四个方面有很大差异:1。化学多样性(不同元素的数量),2。系统大小(每个样品原子数),3。数据集大小(数据样本数)和4.域移动(培训和测试集的相似性)。尽管存在这些较大的差异,但在狭窄和狭窄的数据集上的基准仍然是证明分子模拟的图形神经网络(GNN)进展的主要方法,这可能是由于较便宜的训练计算要求所致。这就提出了一个问题 - GNN在小和狭窄的数据集上的进展是否转化为这些更复杂的数据集?这项工作通过首先根据大型开放催化剂2020(OC20)数据集开发Gemnet-OC模型来研究这个问题。 Gemnet-OC的表现优于OC20上的先前最新ART,同时将训练时间减少10倍。然后,我们比较了18个模型组件和超参数选择对多个数据集的性能的影响。我们发现,根据用于做出模型选择的数据集,所得模型将大不相同。为了隔离这种差异的来源,我们研究了OC20数据集的六个子集,这些子集分别测试了上述四个数据集方面的每个数据集。我们发现,OC-2M子集的结果与完整的OC20数据集良好相关,同时训练得更便宜。我们的发现挑战了仅在小型数据集上开发GNN的常见做法,但突出了通过中等尺寸的代表性数据集(例如OC-2M)以及Gemnet-oc等高效模型来实现快速开发周期和可推广结果的方法。我们的代码和预估计的模型权重是开源的。
translated by 谷歌翻译
这项工作考虑了在属性关系图(ARG)上表示表示的任务。 ARG中的节点和边缘都与属性/功能相关联,允许ARG编码在实际应用中广泛观察到的丰富结构信息。现有的图形神经网络提供了有限的能力,可以在局部结构环境中捕获复杂的相互作用,从而阻碍他们利用ARG的表达能力。我们提出了Motif卷积模块(MCM),这是一种新的基于基线的图表表示技术,以更好地利用本地结构信息。处理连续边缘和节点功能的能力是MCM比现有基于基础图案的模型的优势之一。 MCM以无监督的方式构建了一个主题词汇,并部署了一种新型的主题卷积操作,以提取单个节点的局部结构上下文,然后将其用于通过多层perceptron学习高级节点表示,并在图神经网络中传递消息。与其他图形学习方法进行分类的合成图相比,我们的方法在捕获结构环境方面要好得多。我们还通过将其应用于几个分子基准来证明我们方法的性能和解释性优势。
translated by 谷歌翻译
偶极矩是一个物理量,指示分子的极性,并通过反映成分原子的电性能和分子的几何特性来确定。大多数用于表示传统图神经网络方法中图表表示的嵌入方式将分子视为拓扑图,从而为识别几何信息的目标造成了重大障碍。与现有的嵌入涉及均值的嵌入不同,该嵌入适当地处理分子的3D结构不同,我们的拟议嵌入直接表达了偶极矩局部贡献的物理意义。我们表明,即使对于具有扩展几何形状的分子并捕获更多的原子相互作用信息,开发的模型甚至可以合理地工作,从而显着改善了预测结果,准确性与AB-Initio计算相当。
translated by 谷歌翻译
The field of geometric deep learning has had a profound impact on the development of innovative and powerful graph neural network architectures. Disciplines such as computer vision and computational biology have benefited significantly from such methodological advances, which has led to breakthroughs in scientific domains such as protein structure prediction and design. In this work, we introduce GCPNet, a new geometry-complete, SE(3)-equivariant graph neural network designed for 3D graph representation learning. We demonstrate the state-of-the-art utility and expressiveness of our method on six independent datasets designed for three distinct geometric tasks: protein-ligand binding affinity prediction, protein structure ranking, and Newtonian many-body systems modeling. Our results suggest that GCPNet is a powerful, general method for capturing complex geometric and physical interactions within 3D graphs for downstream prediction tasks. The source code, data, and instructions to train new models or reproduce our results are freely available on GitHub.
translated by 谷歌翻译
建模原子系统的能量和力是计算化学中的一个基本问题,有可能帮助解决世界上许多最紧迫的问题,包括与能源稀缺和气候变化有关的问题。这些计算传统上是使用密度函数理论进行的,这在计算上非常昂贵。机器学习有可能从天数或小时到秒从天数大幅提高这些计算的效率。我们建议球形通道网络(SCN)对原子能量和力进行建模。 SCN是一个图神经网络,节点代表原子并边缘其相邻原子。原子嵌入是使用球形谐波表示的一组球形函数,称为球形通道。我们证明,通过基于3D边缘方向旋转嵌入式,可以在保持消息的旋转模糊性的同时使用更多信息。虽然均衡性是理想的属性,但我们发现,通过在消息传递和聚合中放松这种约束,可以提高准确性。我们在大规模开放催化剂2020数据集中展示了最新的结果,这些数据集在能源和力量预测中,用于许多任务和指标。
translated by 谷歌翻译
近年来,基于Weisfeiler-Leman算法的算法和神经架构,是一个众所周知的Graph同构问题的启发式问题,它成为具有图形和关系数据的机器学习的强大工具。在这里,我们全面概述了机器学习设置中的算法的使用,专注于监督的制度。我们讨论了理论背景,展示了如何将其用于监督的图形和节点表示学习,讨论最近的扩展,并概述算法的连接(置换 - )方面的神经结构。此外,我们概述了当前的应用和未来方向,以刺激进一步的研究。
translated by 谷歌翻译
这项工作介绍了神经性等因素的外部潜力(NEQUIP),E(3) - 用于学习分子动力学模拟的AB-INITIO计算的用于学习网状体电位的e(3)的神经网络方法。虽然大多数当代对称的模型使用不变的卷曲,但仅在标量上采取行动,Nequip采用E(3) - 几何张量的相互作用,举起Quivariant卷曲,导致了更多的信息丰富和忠实的原子环境代表。该方法在挑战和多样化的分子和材料集中实现了最先进的准确性,同时表现出显着的数据效率。 Nequip优先于现有型号,最多三个数量级的培训数据,挑战深度神经网络需要大量培训套装。该方法的高数据效率允许使用高阶量子化学水平的理论作为参考的精确潜力构建,并且在长时间尺度上实现高保真分子动力学模拟。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
自我监督学习(SSL)是一种通过利用数据中固有的监督来学习数据表示的方法。这种学习方法是药物领域的焦点,由于耗时且昂贵的实验,缺乏带注释的数据。使用巨大未标记数据的SSL显示出在分子属性预测方面表现出色的性能,但存在一些问题。 (1)现有的SSL模型是大规模的;在计算资源不足的情况下实现SSL有限制。 (2)在大多数情况下,它们不利用3D结构信息进行分子表示学习。药物的活性与药物分子的结构密切相关。但是,大多数当前模型不使用3D信息或部分使用它。 (3)以前对分子进行对比学习的模型使用置换原子和键的增强。因此,具有不同特征的分子可以在相同的阳性样品中。我们提出了一个新颖的对比学习框架,用于分子属性预测的小规模3D图对比度学习(3DGCL),以解决上述问题。 3DGCL通过不改变药物语义的预训练过程来反映分子的结构来学习分子表示。仅使用1,128个样本用于预训练数据和100万个模型参数,我们在四个回归基准数据集中实现了最先进或可比性的性能。广泛的实验表明,基于化学知识的3D结构信息对于用于财产预测的分子表示学习至关重要。
translated by 谷歌翻译