神经信息检索(IR)具有极大的搜索和其他知识密集型语言任务。虽然许多神经IR方法将查询和文档编码为单载表示,但后期交互模型在每个令牌的粒度下产生多向量表示,并将相关性建模分解为可伸缩的令牌级计算。这种分解已被证明可以使迟到的交互更有效,但它以幅度的数量级膨胀这些模型的空间占地面积。在这项工作中,我们介绍了Colbertv2,这是一种猎犬,其与去噪的监督策略相结合的侵略性的残余压缩机制,同时提高晚期互动的质量和空间足迹。我们在各种基准中评估COLBertv2,在培训域内和外部建立最先进的质量,同时减少了晚期互动模型的空间足迹5-8 $ \ times $。
translated by 谷歌翻译
多跳的推理(即跨两个或多个文档的推理)是NLP模型的关键要素,该模型利用大型语料库表现出广泛的知识。为了检索证据段落,多跳模型必须与整个啤酒花的快速增长的搜索空间抗衡,代表结合多个信息需求的复杂查询,并解决有关在训练段落之间跳出的最佳顺序的歧义。我们通过Baleen解决了这些问题,Baleen可以提高多跳检索的准确性,同时从多跳的训练信号中学习强大的训练信号的准确性。为了驯服搜索空间,我们提出了凝结的检索,该管道总结了每个跃点后检索到单个紧凑型上下文的管道。为了建模复杂的查询,我们引入了一个重点的后期相互作用检索器,该检索器允许同一查询表示的不同部分匹配不同的相关段落。最后,为了推断无序的训练段落中的跳跃依赖性,我们设计了潜在的跳跃订购,这是一种弱者的策略,在该策略中,受过训练的检索员本身选择了啤酒花的顺序。我们在检索中评估Baleen的两跳问答和多跳的要求验证,并确定最先进的绩效。
translated by 谷歌翻译
我们提出了Drboost,一个受升压启发的密集检索合奏。Drboost在阶段接受培训:通过仅关注当前合奏制作的检索错误来依次学习和专注于每个组件模型。最终的表示是所有组件模型的输出矢量的串联,使其成为测试时间标准密集检索器的替代品。与标准密集检索模型相比,Drboost享有几个优点。它产生的表示是4x更紧凑,同时提供可比的检索结果。它还在具有粗量化的近似搜索下进行令人惊讶的良好,从而减少另一个4x的延迟和带宽需求。在实践中,这可以在从内存中服务索引之间的服务指数之间的区别,为更便宜的部署铺平道路。
translated by 谷歌翻译
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dualencoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system greatly by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks. 1 * Equal contribution 1 The code and trained models have been released at https://github.com/facebookresearch/DPR.
translated by 谷歌翻译
Recent progress in Natural Language Understanding (NLU) is driving fast-paced advances in Information Retrieval (IR), largely owed to ne-tuning deep language models (LMs) for document ranking.While remarkably e ective, the ranking models based on these LMs increase computational cost by orders of magnitude over prior approaches, particularly as they must feed each query-document pair through a massive neural network to compute a single relevance score. To tackle this, we present ColBERT, a novel ranking model that adapts deep LMs (in particular, BERT) for e cient retrieval. ColBERT introduces a late interaction architecture that independently encodes the query and the document using BERT and then employs a cheap yet powerful interaction step that models their ne-grained similarity. By delaying and yet retaining this negranular interaction, ColBERT can leverage the expressiveness of deep LMs while simultaneously gaining the ability to pre-compute document representations o ine, considerably speeding up query processing. Beyond reducing the cost of re-ranking the documents retrieved by a traditional model, ColBERT's pruning-friendly interaction mechanism enables leveraging vector-similarity indexes for end-to-end retrieval directly from a large document collection. We extensively evaluate ColBERT using two recent passage search datasets. Results show that ColBERT's e ectiveness is competitive with existing BERT-based models (and outperforms every non-BERT baseline), while executing two orders-of-magnitude faster and requiring four orders-of-magnitude fewer FLOPs per query.
translated by 谷歌翻译
我们提出了一种以最小计算成本提高广泛检索模型的性能的框架。它利用由基本密度检索方法提取的预先提取的文档表示,并且涉及训练模型以共同评分每个查询的一组检索到的候选文档,同时在其他候选的上下文中暂时转换每个文档的表示。以及查询本身。当基于其与查询的相似性进行评分文档表示时,该模型因此意识到其“对等”文档的表示。我们表明,我们的方法导致基本方法的检索性能以及彼此隔离的评分候选文档进行了大量改善,如在一对培训环境中。至关重要的是,与基于伯特式编码器的术语交互重型器不同,它在运行时在任何第一阶段方法的顶部引发可忽略不计的计算开销,允许它与任何最先进的密集检索方法容易地结合。最后,同时考虑给定查询的一组候选文档,可以在检索中进行额外的有价值的功能,例如评分校准和减轻排名中的社会偏差。
translated by 谷歌翻译
关于信息检索的许多最新研究集中在如何从一项任务(通常具有丰富的监督数据)转移到有限的其他各种任务,并隐含地假设可以从一个任务概括到所有其余的任务。但是,这忽略了这样一个事实,即有许多多样化和独特的检索任务,每个任务都针对不同的搜索意图,查询和搜索域。在本文中,我们建议使用几乎没有散热的检索,每个任务都有一个简短的描述和一些示例。为了扩大一些示例的功能,我们提出了针对检索器(即将到来)的及时基本查询生成,该查询将大型语言模型(LLM)作为几个弹片查询生成器,并根据生成的数据创建特定于任务的检索器。通过LLM的概括能力提供动力,即要来源使得可以仅基于一些示例{没有自然问题或MS MARCO来训练%问题生成器或双重编码器,就可以仅基于一些示例{没有}来创建特定于任务的端到端检索。出乎意料的是,LLM提示不超过8个示例,允许双重编码器在MARCO(例如Colbert V2)上训练的大量工程模型平均在11个检索套件中超过1.2 NDCG。使用相同生成数据的进一步培训标准尺寸的重新级别可获得5.0点NDCG的改进。我们的研究确定,查询产生比以前观察到的更有效,尤其是在给出少量特定于任务知识的情况下。
translated by 谷歌翻译
已经表明,在一个域上训练的双编码器经常概括到其他域以获取检索任务。一种广泛的信念是,一个双编码器的瓶颈层,其中最终得分仅仅是查询向量和通道向量之间的点产品,它过于局限,使得双编码器是用于域外概括的有效检索模型。在本文中,我们通过缩放双编码器模型的大小{\ em同时保持固定的瓶颈嵌入尺寸固定的瓶颈的大小来挑战这一信念。令人惊讶的是,令人惊讶的是,缩放模型尺寸会对各种缩放提高检索任务,特别是对于域外泛化。实验结果表明,我们的双编码器,\ textbf {g} enovalizable \ textbf {t} eTrievers(gtr),优先级%colbert〜\ cite {khattab2020colbertt}和现有的稀疏和密集的索取Beir DataSet〜\ Cite {Thakur2021Beir}显着显着。最令人惊讶的是,我们的消融研究发现,GTR是非常数据的高效,因为它只需要10 \%MARCO监督数据,以实现最佳域的性能。所有GTR模型都在https://tfhub.dev/google/collections/gtr/1发布。
translated by 谷歌翻译
在本文中,我们提出了一个新的密集检索模型,该模型通过深度查询相互作用学习了各种文档表示。我们的模型使用一组生成的伪Queries编码每个文档,以获取查询信息的多视文档表示。它不仅具有较高的推理效率,例如《香草双编码模型》,而且还可以在文档编码中启用深度查询文档的交互,并提供多方面的表示形式,以更好地匹配不同的查询。几个基准的实验证明了所提出的方法的有效性,表现出色的双重编码基准。
translated by 谷歌翻译
We study the problem of retrieval with instructions, where users of a retrieval system explicitly describe their intent along with their queries. We aim to develop a general-purpose task-aware retrieval system using multi-task instruction tuning, which can follow human-written instructions to find the best documents for a given query. We introduce the first large-scale collection of approximately 40 retrieval datasets with instructions, BERRI, and present TART, a multi-task retrieval system trained on BERRI with instructions. TART shows strong capabilities to adapt to a new retrieval task via instructions and advances the state of the art on two zero-shot retrieval benchmarks, BEIR and LOTTE, outperforming models up to three times larger. We further introduce a new evaluation setup, X^2-Retrieval to better reflect real-world scenarios, where diverse domains and tasks are pooled and a system needs to find documents aligning users' intents. In this setup, TART significantly outperforms competitive baselines, further demonstrating the effectiveness of guiding retrieval with instructions.
translated by 谷歌翻译
最近,几种密集的检索(DR)模型已经证明了在搜索系统中无处不在的基于术语的检索的竞争性能。与基于术语的匹配相反,DR将查询和文档投影到密集的矢量空间中,并通过(大约)最近的邻居搜索检索结果。部署新系统(例如DR)不可避免地涉及其性能方面的权衡。通常,建立的检索系统按照效率和成本(例如查询延迟,索引吞吐量或存储要求)对其进行了良好的理解。在这项工作中,我们提出了一个具有一组标准的框架,这些框架超出了简单的有效性措施,可以彻底比较两个检索系统,并明确目标是评估一个系统的准备就绪,以取代另一个系统。这包括有效性和各种成本因素之间的仔细权衡考虑。此外,我们描述了护栏标准,因为即使是平均而言更好的系统,也可能会对少数查询产生系统性故障。护栏检查某些查询特性和新型故障类型的故障,这些故障仅在密集检索系统中才有可能。我们在网络排名方案上演示了我们的决策框架。在这种情况下,最先进的DR模型的结果令人惊讶,不仅是平均表现,而且通过一系列广泛的护栏测试,表现出不同的查询特性,词汇匹配,概括和回归次数的稳健性。无法预测将来博士是否会变得无处不在,但是这是一种可能的方法是通过重复应用决策过程(例如此处介绍的过程)。
translated by 谷歌翻译
我们在11个类型的类型不同语言中展示了一个用于单语言检索的多语言基准数据集的Tydi先生,旨在评估与学习的密集表示的排名。该资源的目标是以非英语语言的密集检索技术进行培训,最近的观察结果是当应用于分发超出数据时的表示学习的现有技术表现不佳。作为一个起点,我们基于我们称之为“MDPR”的多语言调整,为此新数据集提供零拍摄线。实验表明,尽管MDPR的有效性远低于BM25,但仍然似乎提供了有价值的相关信号,改善了BM25导致稀疏致密的杂种。除了对我们的结果分析外,我们还讨论了未来的挑战,并在多语言密集检索中展示了一个研究议程。Tydi先生可以在https://github.com/castorini/mr.tydi下载。
translated by 谷歌翻译
Deave Learning模型命名为变形金刚实现了最先进的导致绝大多数NLP任务,以增加计算复杂性和高记忆消耗。在实时推理中使用变压器模型成为在生产中实施时的重大挑战,因为它需要昂贵的计算资源。需要更频率的吞吐量执行变压器的执行越大,并且切换到较小的编码器导致精度降低。我们的论文致力于如何为信息检索管道排名步骤选择合适架构的问题,以便更改变压器编码器的所需呼叫的数量最小,最大可实现的排名质量。我们调查了多种延迟交互模型,如COLBert和Poly-Concoder架构以及它们的修改。此外,我们负责搜索索引的内存占用空间,并尝试应用学习 - 哈希方法,以二值从变压器编码器二值化。使用TREC 2019-2021和MARCO DEV数据集提供评估结果。
translated by 谷歌翻译
我们介绍了Art,这是一种新的语料库级自动编码方法,用于培训密集检索模型,不需要任何标记的培训数据。密集的检索是开放域任务(例如Open QA)的核心挑战,在该任务中,最先进的方法通常需要大量的监督数据集,并具有自定义的硬性采矿和肯定式示例。相反,艺术品仅需要访问未配对的投入和输出(例如问题和潜在的答案文件)。它使用新的文档 - 重新定义自动编码方案,其中(1)输入问题用于检索一组证据文档,并且(2)随后使用文档来计算重建原始问题的概率。基于问题重建的检索培训可以有效地学习文档和问题编码器,以后可以将其纳入完整的QA系统中,而无需任何进一步的填充。广泛的实验表明,ART在多个QA检索基准测试基准上获得最先进的结果,并且仅来自预训练的语言模型的一般初始化,从而消除了对标记的数据和特定于任务的损失的需求。
translated by 谷歌翻译
本文概述了了解信息检索和自然语言处理中最近的发展的概念框架,试图集成密集和稀疏检索方法。我提出了一种代表性方法,将核心文本检索问题与逻辑评分模型和物理检索模型中断。评分模型在编码器方面定义,将查询和文档映射到代表空间,以及计算查询文档分数的比较函数。物理检索模型定义了系统如何从关于查询的任意大语料库产生顶级k $ Scoring文档。分别沿两个维度进一步分析得分模型:密集与稀疏表示和监督(学习)与无监督的方法。我展示了许多最近提出的检索方法,包括多级排名设计,可以看作是本框架中的不同参数化,并且统一视图表明了许多开放的研究问题,为未来的工作提供了路线图。作为奖金,这种概念框架在计算时建立了与自然语言处理和信息访问“技术”中的句子相似任务的连接。
translated by 谷歌翻译
知识密集型语言任务(苏格兰信)通常需要大量信息来提供正确的答案。解决此问题的一种流行范式是将搜索系统与机器读取器相结合,前者检索支持证据,后者检查它们以产生答案。最近,读者组成部分在大规模预培养的生成模型的帮助下见证了重大进展。同时,搜索组件中的大多数现有解决方案都依赖于传统的``索引 - retrieve-then-Rank''管道,该管道遭受了巨大的内存足迹和端到端优化的困难。受到最新构建基于模型的IR模型的努力的启发,我们建议用新颖的单步生成模型替换传统的多步搜索管道,该模型可以极大地简化搜索过程并以端到端的方式进行优化。我们表明,可以通过一组经过适当设计的预训练任务来学习强大的生成检索模型,并被采用以通过进一步的微调来改善各种下游苏格兰短裙任务。我们将预训练的生成检索模型命名为Copusbrain,因为有关该语料库的所有信息均以其参数进行编码,而无需构造其他索引。经验结果表明,在苏格兰语基准上的检索任务并建立了新的最新性能,Copusbrain可以极大地超过强大的基准。我们还表明,在零农源和低资源设置下,科体班运行良好。
translated by 谷歌翻译
为了解决现实世界应用需求的日益增长,知识密集型NLP(KI-NLP)的研究应通过捕获真正开放域环境的挑战:网络规模知识,结构缺乏,质量不一致,和噪音。为此,我们提出了一种新的设置,用于评估现有的KI-NLP任务,其中我们将背景语料库概括为通用Web快照。我们重新保证Kilt,最初为维基百科最初开发的标准Ki-NLP基准测试,并要求系统使用CCNet的子集 - 球体语料库 - 作为知识源。与维基百科相比,球体是较大的数量级,更好地反映了互联网上的全部知识。我们发现,尽管潜在的覆盖范围,规模挑战,结构缺乏,质量较低,来自领域的检索可以实现最先进的检索系统,以匹配和甚至优于基于Wikipedia的模型在几个kilt上任务 - 即使我们积极过滤看起来像维基百科的内容。我们还观察到Wikipedia的单一密集通道指数可以胜过稀疏的BM25版本,而在球体上尚不实现。为了促进进一步研究该领域,并尽量减少社区对专有黑匣子搜索引擎的依赖,我们将分享我们的指数,评估指标和基础设施。
translated by 谷歌翻译
Systems for knowledge-intensive tasks such as open-domain question answering (QA) usually consist of two stages: efficient retrieval of relevant documents from a large corpus and detailed reading of the selected documents to generate answers. Retrievers and readers are usually modeled separately, which necessitates a cumbersome implementation and is hard to train and adapt in an end-to-end fashion. In this paper, we revisit this design and eschew the separate architecture and training in favor of a single Transformer that performs Retrieval as Attention (ReAtt), and end-to-end training solely based on supervision from the end QA task. We demonstrate for the first time that a single model trained end-to-end can achieve both competitive retrieval and QA performance, matching or slightly outperforming state-of-the-art separately trained retrievers and readers. Moreover, end-to-end adaptation significantly boosts its performance on out-of-domain datasets in both supervised and unsupervised settings, making our model a simple and adaptable solution for knowledge-intensive tasks. Code and models are available at https://github.com/jzbjyb/ReAtt.
translated by 谷歌翻译
对于开放式域问题的密集检索已被证明通过在问题通道对的大型数据集上培训来实现令人印象深刻的性能。我们调查是否可以以自我监督的方式学习密集的检索,并有效地应用没有任何注释。我们观察到这种情况下的检索斗争的现有借用模型,并提出了一种设计用于检索的新预制方案:重复跨度检索。我们在文档中使用经常性跨度来创建用于对比学习的伪示例。由此产生的模型 - 蜘蛛 - 在广泛的ODQA数据集上没有任何示例,并且与BM25具有竞争力,具有强烈的稀疏基线。此外,蜘蛛通常优于DPR在其他数据集的问题上培训的DPR培训的强大基线。我们将蜘蛛与BM25结合的混合猎犬改进了所有数据集的组件,并且通常与域中DPR模型具有竞争力,这些模型培训数万例培训。
translated by 谷歌翻译
大型语言模型在各种任务上显示出令人印象深刻的几次结果。但是,当知识是此类结果的关键时,就像问题回答和事实检查之类的任务一样,似乎需要存储知识的大量参数计数。众所周知,检索增强模型可以在不需要多个参数的情况下在知识密集的任务上表现出色,但是目前尚不清楚它们是否在几个弹药设置中工作。在这项工作中,我们介绍了地图集,这是一个经过精心设计和预先训练的增强语言模型,能够通过很少的培训示例学习知识密集型任务。我们对包括MMLU,苏格兰短裙和归类等各种任务进行评估,并研究文档索引内容的影响,表明它可以很容易地进行更新。值得注意的是,在自然问题上仅使用64个示例在自然问题上达到超过42 \%的准确性,尽管参数少了50倍,但比540B参数模型的表现优于540b参数模型。
translated by 谷歌翻译