Recent progress in Natural Language Understanding (NLU) is driving fast-paced advances in Information Retrieval (IR), largely owed to ne-tuning deep language models (LMs) for document ranking.While remarkably e ective, the ranking models based on these LMs increase computational cost by orders of magnitude over prior approaches, particularly as they must feed each query-document pair through a massive neural network to compute a single relevance score. To tackle this, we present ColBERT, a novel ranking model that adapts deep LMs (in particular, BERT) for e cient retrieval. ColBERT introduces a late interaction architecture that independently encodes the query and the document using BERT and then employs a cheap yet powerful interaction step that models their ne-grained similarity. By delaying and yet retaining this negranular interaction, ColBERT can leverage the expressiveness of deep LMs while simultaneously gaining the ability to pre-compute document representations o ine, considerably speeding up query processing. Beyond reducing the cost of re-ranking the documents retrieved by a traditional model, ColBERT's pruning-friendly interaction mechanism enables leveraging vector-similarity indexes for end-to-end retrieval directly from a large document collection. We extensively evaluate ColBERT using two recent passage search datasets. Results show that ColBERT's e ectiveness is competitive with existing BERT-based models (and outperforms every non-BERT baseline), while executing two orders-of-magnitude faster and requiring four orders-of-magnitude fewer FLOPs per query.
translated by 谷歌翻译
神经信息检索(IR)具有极大的搜索和其他知识密集型语言任务。虽然许多神经IR方法将查询和文档编码为单载表示,但后期交互模型在每个令牌的粒度下产生多向量表示,并将相关性建模分解为可伸缩的令牌级计算。这种分解已被证明可以使迟到的交互更有效,但它以幅度的数量级膨胀这些模型的空间占地面积。在这项工作中,我们介绍了Colbertv2,这是一种猎犬,其与去噪的监督策略相结合的侵略性的残余压缩机制,同时提高晚期互动的质量和空间足迹。我们在各种基准中评估COLBertv2,在培训域内和外部建立最先进的质量,同时减少了晚期互动模型的空间足迹5-8 $ \ times $。
translated by 谷歌翻译
Deave Learning模型命名为变形金刚实现了最先进的导致绝大多数NLP任务,以增加计算复杂性和高记忆消耗。在实时推理中使用变压器模型成为在生产中实施时的重大挑战,因为它需要昂贵的计算资源。需要更频率的吞吐量执行变压器的执行越大,并且切换到较小的编码器导致精度降低。我们的论文致力于如何为信息检索管道排名步骤选择合适架构的问题,以便更改变压器编码器的所需呼叫的数量最小,最大可实现的排名质量。我们调查了多种延迟交互模型,如COLBert和Poly-Concoder架构以及它们的修改。此外,我们负责搜索索引的内存占用空间,并尝试应用学习 - 哈希方法,以二值从变压器编码器二值化。使用TREC 2019-2021和MARCO DEV数据集提供评估结果。
translated by 谷歌翻译
在本文中,我们提出了一个新的密集检索模型,该模型通过深度查询相互作用学习了各种文档表示。我们的模型使用一组生成的伪Queries编码每个文档,以获取查询信息的多视文档表示。它不仅具有较高的推理效率,例如《香草双编码模型》,而且还可以在文档编码中启用深度查询文档的交互,并提供多方面的表示形式,以更好地匹配不同的查询。几个基准的实验证明了所提出的方法的有效性,表现出色的双重编码基准。
translated by 谷歌翻译
我们提出了一种以最小计算成本提高广泛检索模型的性能的框架。它利用由基本密度检索方法提取的预先提取的文档表示,并且涉及训练模型以共同评分每个查询的一组检索到的候选文档,同时在其他候选的上下文中暂时转换每个文档的表示。以及查询本身。当基于其与查询的相似性进行评分文档表示时,该模型因此意识到其“对等”文档的表示。我们表明,我们的方法导致基本方法的检索性能以及彼此隔离的评分候选文档进行了大量改善,如在一对培训环境中。至关重要的是,与基于伯特式编码器的术语交互重型器不同,它在运行时在任何第一阶段方法的顶部引发可忽略不计的计算开销,允许它与任何最先进的密集检索方法容易地结合。最后,同时考虑给定查询的一组候选文档,可以在检索中进行额外的有价值的功能,例如评分校准和减轻排名中的社会偏差。
translated by 谷歌翻译
多跳的推理(即跨两个或多个文档的推理)是NLP模型的关键要素,该模型利用大型语料库表现出广泛的知识。为了检索证据段落,多跳模型必须与整个啤酒花的快速增长的搜索空间抗衡,代表结合多个信息需求的复杂查询,并解决有关在训练段落之间跳出的最佳顺序的歧义。我们通过Baleen解决了这些问题,Baleen可以提高多跳检索的准确性,同时从多跳的训练信号中学习强大的训练信号的准确性。为了驯服搜索空间,我们提出了凝结的检索,该管道总结了每个跃点后检索到单个紧凑型上下文的管道。为了建模复杂的查询,我们引入了一个重点的后期相互作用检索器,该检索器允许同一查询表示的不同部分匹配不同的相关段落。最后,为了推断无序的训练段落中的跳跃依赖性,我们设计了潜在的跳跃订购,这是一种弱者的策略,在该策略中,受过训练的检索员本身选择了啤酒花的顺序。我们在检索中评估Baleen的两跳问答和多跳的要求验证,并确定最先进的绩效。
translated by 谷歌翻译
在这项工作中,我们提出了一个系统的实证研究,专注于最先进的多语言编码器在跨越多种不同语言对的交叉语言文档和句子检索任务的适用性。我们首先将这些模型视为多语言文本编码器,并在无监督的ad-hoc句子和文档级CLIR中基准性能。与监督语言理解相比,我们的结果表明,对于无监督的文档级CLIR - 一个没有针对IR特定的微调 - 预训练的多语言编码器的相关性判断,平均未能基于CLWE显着优于早期模型。对于句子级检索,我们确实获得了最先进的性能:然而,通过多语言编码器来满足高峰分数,这些编码器已经进一步专注于监督的时尚,以便句子理解任务,而不是使用他们的香草'现货'变体。在这些结果之后,我们介绍了文档级CLIR的本地化相关性匹配,在那里我们独立地对文件部分进行了查询。在第二部分中,我们评估了在一系列零拍语言和域转移CLIR实验中的英语相关数据中进行微调的微调编码器精细调整的微调我们的结果表明,监督重新排名很少提高多语言变压器作为无监督的基数。最后,只有在域名对比度微调(即,同一域名,只有语言转移),我们设法提高排名质量。我们在目标语言中单次检索的交叉定向检索结果和结果(零拍摄)交叉传输之间的显着实证差异,这指出了在单机数据上训练的检索模型的“单声道过度装备”。
translated by 谷歌翻译
排名模型是信息检索系统的主要组成部分。排名的几种方法是基于传统的机器学习算法,使用一组手工制作的功能。最近,研究人员在信息检索中利用了深度学习模型。这些模型的培训结束于结束,以提取来自RAW数据的特征来排序任务,因此它们克服了手工制作功能的局限性。已经提出了各种深度学习模型,每个模型都呈现了一组神经网络组件,以提取用于排名的特征。在本文中,我们在不同方面比较文献中提出的模型,以了解每个模型的主要贡献和限制。在我们对文献的讨论中,我们分析了有前途的神经元件,并提出了未来的研究方向。我们还显示文档检索和其他检索任务之间的类比,其中排名的项目是结构化文档,答案,图像和视频。
translated by 谷歌翻译
本文概述了了解信息检索和自然语言处理中最近的发展的概念框架,试图集成密集和稀疏检索方法。我提出了一种代表性方法,将核心文本检索问题与逻辑评分模型和物理检索模型中断。评分模型在编码器方面定义,将查询和文档映射到代表空间,以及计算查询文档分数的比较函数。物理检索模型定义了系统如何从关于查询的任意大语料库产生顶级k $ Scoring文档。分别沿两个维度进一步分析得分模型:密集与稀疏表示和监督(学习)与无监督的方法。我展示了许多最近提出的检索方法,包括多级排名设计,可以看作是本框架中的不同参数化,并且统一视图表明了许多开放的研究问题,为未来的工作提供了路线图。作为奖金,这种概念框架在计算时建立了与自然语言处理和信息访问“技术”中的句子相似任务的连接。
translated by 谷歌翻译
我们对13个最近的模型进行了全面评估,用于使用两个流行的收藏(MS MARCO文档和Robust04)排名长期文档。我们的模型动物园包括两个专门的变压器模型(例如longformer),它们可以处理长文档而无需分配它们。一路上,我们记录了有关培训和比较此类模型的几个困难。有些令人惊讶的是,我们发现简单的第一个基线(满足典型变压器模型的输入序列约束的截断文档)非常有效。我们分析相关段落的分布(内部文档),以解释这种现象。我们进一步认为,尽管它们广泛使用,但Robust04和MS Marco文档对于基准长期模型并不是特别有用。
translated by 谷歌翻译
Web搜索引擎专注于在数百毫秒内提供高度相关的结果。因此,由于其高计算需求,在这种情况下,诸如BERT的预先培训的语言变压器型号难以使用。我们向文档排名问题提供了利用基于BERT的暹罗建筑的实时方法。该模型已经部署在商业搜索引擎中,它将生产性能提高3%以上。为了进一步研究和评估,我们释放Dareczech,一个独特的数据集,一个160万捷克用户查询文档对,手动分配相关性级别。我们还释放了小型电子捷克语,这是一个在大型捷克语中预先培训的电动小语言模型。我们认为,此数据将支持努力,搜索相关性和多语言集中的研究社区。
translated by 谷歌翻译
本文介绍了学习迭代查询细化的元策略的设计代理的首先成功步骤。我们的方法使用机器读取来指导从聚合搜索结果中选择细化项。然后,使用简单但有效的搜索操作员能够赋予代理,以对查询和搜索结果发挥细粒度和透明控制。我们开发一种新颖的方式来发电综合搜索会话,它通过(自我)监督学习来利用基于变压器的语言模型的力量。我们还提出了一种强化学习代理,具有动态约束的动作,从划痕中了解互动搜索策略。我们使用传统的基于术语的BM25排名函数获得与最近神经方法相当的检索和回答质量性能。我们对搜索政策进行了深入的分析。
translated by 谷歌翻译
已经表明,在一个域上训练的双编码器经常概括到其他域以获取检索任务。一种广泛的信念是,一个双编码器的瓶颈层,其中最终得分仅仅是查询向量和通道向量之间的点产品,它过于局限,使得双编码器是用于域外概括的有效检索模型。在本文中,我们通过缩放双编码器模型的大小{\ em同时保持固定的瓶颈嵌入尺寸固定的瓶颈的大小来挑战这一信念。令人惊讶的是,令人惊讶的是,缩放模型尺寸会对各种缩放提高检索任务,特别是对于域外泛化。实验结果表明,我们的双编码器,\ textbf {g} enovalizable \ textbf {t} eTrievers(gtr),优先级%colbert〜\ cite {khattab2020colbertt}和现有的稀疏和密集的索取Beir DataSet〜\ Cite {Thakur2021Beir}显着显着。最令人惊讶的是,我们的消融研究发现,GTR是非常数据的高效,因为它只需要10 \%MARCO监督数据,以实现最佳域的性能。所有GTR模型都在https://tfhub.dev/google/collections/gtr/1发布。
translated by 谷歌翻译
文档检索使用户能够准确,快速找到所需的文档。为了满足检索效率的要求,普遍的深神经方法采用了基于表示的匹配范式,该范式通过离线预先存储文档表示节省了在线匹配时间。但是,上述范式会消耗庞大的本地存储空间,尤其是将文档存储为单词元素表示时。为了解决这个问题,我们提出了TGTR,这是一种基于主题的文本表示模型,用于文档检索。遵循基于表示的匹配范式,TGTR将文档表示脱机存储以确保检索效率,而通过使用新颖的主题格式表示,而不是传统的单词元素,则大大降低了存储要求。实验结果表明,与单词粒度的基线相比,TGTR在检索准确性方面始终在TREC CAR和MS MARCO上竞争,但其所需的存储空间的少于1/10。此外,TGTR绝大多数在检索准确性方面超过了全球粒度的基线。
translated by 谷歌翻译
最近已提出COLBert模型作为基于有效的伯特伯爵的排名。通过采用迟到的互动机制,COLBert的主要优势是文件表示可以预先预先计算。但是,该模型的大缺陷是索引大小,其与集合中的令牌数量线性缩放。在本文中,我们研究了COLBERT模型的各种设计,以攻击此问题。虽然已经探索了压缩技术以减少指数大小,但在本文中,我们研究了COLBERT的令牌修剪技术。我们比较简单的启发式机器,以及一层注意机制,选择令牌以保持索引时间。我们的实验表明,COLBert指标可以在MS Marco Conserfer集合上修剪高达30 \%,而无需显着下降。最后,我们在MS MARCO文件上实验,揭示了这种机制的几个挑战。
translated by 谷歌翻译
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dualencoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system greatly by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks. 1 * Equal contribution 1 The code and trained models have been released at https://github.com/facebookresearch/DPR.
translated by 谷歌翻译
Word Embeddings于2013年在2013年宣传了Word2Vec,已成为NLP工程管道的主流。最近,随着BERT的发布,Word Embeddings已经从基于术语的嵌入空间移动到上下文嵌入空间 - 每个术语不再由单个低维向量表示,而是每个术语,而是\ \ EMPH {其上下文}。确定矢量权重。 BERT的设置和架构已被证明足以适用于许多自然语言任务。重要的是,对于信息检索(IR),与IR问题的先前深度学习解决方案相比,需要在神经净架构和培训制度的显着调整,“Vanilla BERT”已被证明以广泛的余量优于现有的检索算法,包括任务在传统的IR基线(如Robust04)上有很长的抵抗检索有效性的Corpora。在本文中,我们采用了最近提出的公理数据集分析技术 - 即,我们创建了每个诊断数据集,每个诊断数据集都满足检索启发式(术语匹配和语义) - 探索BERT能够学习的是什么。与我们的期望相比,我们发现BERT,当应用于最近发布的具有ad-hoc主题的大规模Web语料库时,\ emph {否}遵守任何探索的公理。与此同时,BERT优于传统的查询似然检索模型40 \%。这意味着IR的公理方法(及其为检索启发式创建的诊断数据集的扩展)可能无法适用于大型语料库。额外的 - 需要不同的公理。
translated by 谷歌翻译
大型语言模型在各种任务上显示出令人印象深刻的几次结果。但是,当知识是此类结果的关键时,就像问题回答和事实检查之类的任务一样,似乎需要存储知识的大量参数计数。众所周知,检索增强模型可以在不需要多个参数的情况下在知识密集的任务上表现出色,但是目前尚不清楚它们是否在几个弹药设置中工作。在这项工作中,我们介绍了地图集,这是一个经过精心设计和预先训练的增强语言模型,能够通过很少的培训示例学习知识密集型任务。我们对包括MMLU,苏格兰短裙和归类等各种任务进行评估,并研究文档索引内容的影响,表明它可以很容易地进行更新。值得注意的是,在自然问题上仅使用64个示例在自然问题上达到超过42 \%的准确性,尽管参数少了50倍,但比540B参数模型的表现优于540b参数模型。
translated by 谷歌翻译
当医学研究人员进行系统审查(SR)时,筛查研究是最耗时的过程:研究人员阅读了数千个医学文献,手动标记它们相关或无关紧要。筛选优先级排序(即,文件排名)是通过提供相关文件的排名来协助研究人员的方法,其中相关文件的排名高于无关。种子驱动的文档排名(SDR)使用已知的相关文档(即,种子)作为查询并生成这些排名。以前的SDR工作试图在查询文档中识别不同术语权重,并在检索模型中使用它们来计算排名分数。或者,我们将SDR任务制定为查询文档的类似文档,并根据相似度得分生成排名。我们提出了一个名为Mirror匹配的文件匹配度量,通过结合常见的书写模式来计算医疗摘要文本之间的匹配分数,例如背景,方法,结果和结论。我们对2019年克利夫氏素母电子邮件进行实验2 TAR数据集,并且经验结果表明这种简单的方法比平均精度和精密的度量标准的传统和神经检索模型实现了更高的性能。
translated by 谷歌翻译
最近,几种密集的检索(DR)模型已经证明了在搜索系统中无处不在的基于术语的检索的竞争性能。与基于术语的匹配相反,DR将查询和文档投影到密集的矢量空间中,并通过(大约)最近的邻居搜索检索结果。部署新系统(例如DR)不可避免地涉及其性能方面的权衡。通常,建立的检索系统按照效率和成本(例如查询延迟,索引吞吐量或存储要求)对其进行了良好的理解。在这项工作中,我们提出了一个具有一组标准的框架,这些框架超出了简单的有效性措施,可以彻底比较两个检索系统,并明确目标是评估一个系统的准备就绪,以取代另一个系统。这包括有效性和各种成本因素之间的仔细权衡考虑。此外,我们描述了护栏标准,因为即使是平均而言更好的系统,也可能会对少数查询产生系统性故障。护栏检查某些查询特性和新型故障类型的故障,这些故障仅在密集检索系统中才有可能。我们在网络排名方案上演示了我们的决策框架。在这种情况下,最先进的DR模型的结果令人惊讶,不仅是平均表现,而且通过一系列广泛的护栏测试,表现出不同的查询特性,词汇匹配,概括和回归次数的稳健性。无法预测将来博士是否会变得无处不在,但是这是一种可能的方法是通过重复应用决策过程(例如此处介绍的过程)。
translated by 谷歌翻译