已经表明,在一个域上训练的双编码器经常概括到其他域以获取检索任务。一种广泛的信念是,一个双编码器的瓶颈层,其中最终得分仅仅是查询向量和通道向量之间的点产品,它过于局限,使得双编码器是用于域外概括的有效检索模型。在本文中,我们通过缩放双编码器模型的大小{\ em同时保持固定的瓶颈嵌入尺寸固定的瓶颈的大小来挑战这一信念。令人惊讶的是,令人惊讶的是,缩放模型尺寸会对各种缩放提高检索任务,特别是对于域外泛化。实验结果表明,我们的双编码器,\ textbf {g} enovalizable \ textbf {t} eTrievers(gtr),优先级%colbert〜\ cite {khattab2020colbertt}和现有的稀疏和密集的索取Beir DataSet〜\ Cite {Thakur2021Beir}显着显着。最令人惊讶的是,我们的消融研究发现,GTR是非常数据的高效,因为它只需要10 \%MARCO监督数据,以实现最佳域的性能。所有GTR模型都在https://tfhub.dev/google/collections/gtr/1发布。
translated by 谷歌翻译
We present Hybrid Infused Reranking for Passages Retrieval (HYRR), a framework for training rerankers based on a hybrid of BM25 and neural retrieval models. Retrievers based on hybrid models have been shown to outperform both BM25 and neural models alone. Our approach exploits this improved performance when training a reranker, leading to a robust reranking model. The reranker, a cross-attention neural model, is shown to be robust to different first-stage retrieval systems, achieving better performance than rerankers simply trained upon the first-stage retrievers in the multi-stage systems. We present evaluations on a supervised passage retrieval task using MS MARCO and zero-shot retrieval tasks using BEIR. The empirical results show strong performance on both evaluations.
translated by 谷歌翻译
关于信息检索的许多最新研究集中在如何从一项任务(通常具有丰富的监督数据)转移到有限的其他各种任务,并隐含地假设可以从一个任务概括到所有其余的任务。但是,这忽略了这样一个事实,即有许多多样化和独特的检索任务,每个任务都针对不同的搜索意图,查询和搜索域。在本文中,我们建议使用几乎没有散热的检索,每个任务都有一个简短的描述和一些示例。为了扩大一些示例的功能,我们提出了针对检索器(即将到来)的及时基本查询生成,该查询将大型语言模型(LLM)作为几个弹片查询生成器,并根据生成的数据创建特定于任务的检索器。通过LLM的概括能力提供动力,即要来源使得可以仅基于一些示例{没有自然问题或MS MARCO来训练%问题生成器或双重编码器,就可以仅基于一些示例{没有}来创建特定于任务的端到端检索。出乎意料的是,LLM提示不超过8个示例,允许双重编码器在MARCO(例如Colbert V2)上训练的大量工程模型平均在11个检索套件中超过1.2 NDCG。使用相同生成数据的进一步培训标准尺寸的重新级别可获得5.0点NDCG的改进。我们的研究确定,查询产生比以前观察到的更有效,尤其是在给出少量特定于任务知识的情况下。
translated by 谷歌翻译
This paper presents E5, a family of state-of-the-art text embeddings that transfer well to a wide range of tasks. The model is trained in a contrastive manner with weak supervision signals from our curated large-scale text pair dataset (called CCPairs). E5 can be readily used as a general-purpose embedding model for any tasks requiring a single-vector representation of texts such as retrieval, clustering, and classification, achieving strong performance in both zero-shot and fine-tuned settings. We conduct extensive evaluations on 56 datasets from the BEIR and MTEB benchmarks. For zero-shot settings, E5 is the first model that outperforms the strong BM25 baseline on the BEIR retrieval benchmark without using any labeled data. When fine-tuned, E5 obtains the best results on the MTEB benchmark, beating existing embedding models with 40x more parameters.
translated by 谷歌翻译
我们提供了从文本到文本变换器(T5)的第一次探索句子嵌入式。句子嵌入式广泛适用于语言处理任务。虽然T5在作为序列到序列映射问题的语言任务上实现令人印象深刻的性能,但目前尚不清楚如何从编码器解码器模型生成陈列嵌入的句子。我们调查三种方法提取T5句子嵌入方法:两个仅利用T5编码器,一个使用全T5编码器解码器模型。为了支持我们的调查,我们建立了一个新的句子代表转移基准,SentGlue,它将Senteval Toolkit扩展到粘合基准的九个任务。我们的编码器的型号优于Senteval和SentGlue传输任务的句子 - BERT和SIMCSE句子嵌入,包括语义文本相似性(STS)。发现从数百万到数十亿参数的缩放T5产生一致的进一步改进。最后,我们的编码器 - 解码器方法在使用句子嵌入时在STS上实现了新的最先进的。我们的模型在https://tfhub.dev/google/collections/sentence-t5/1发布。
translated by 谷歌翻译
在本文中,我们提出了一个新的密集检索模型,该模型通过深度查询相互作用学习了各种文档表示。我们的模型使用一组生成的伪Queries编码每个文档,以获取查询信息的多视文档表示。它不仅具有较高的推理效率,例如《香草双编码模型》,而且还可以在文档编码中启用深度查询文档的交互,并提供多方面的表示形式,以更好地匹配不同的查询。几个基准的实验证明了所提出的方法的有效性,表现出色的双重编码基准。
translated by 谷歌翻译
信息检索是自然语言处理中的重要组成部分,用于知识密集型任务,如问题应答和事实检查。最近,信息检索已经看到基于神经网络的密集检索器的出现,作为基于术语频率的典型稀疏方法的替代方案。这些模型在数据集和任务中获得了最先进的结果,其中提供了大型训练集。但是,它们不会很好地转移到没有培训数据的新域或应用程序,并且通常因未经监督的术语 - 频率方法(例如BM25)的术语频率方法而言。因此,自然问题是如果没有监督,是否有可能训练密集的索取。在这项工作中,我们探讨了对比学习的限制,作为培训无人监督的密集检索的一种方式,并表明它导致强烈的检索性能。更确切地说,我们在15个数据集中出现了我们的模型胜过BM25的Beir基准测试。此外,当有几千例的示例可用时,我们显示微调我们的模型,与BM25相比,这些模型导致强大的改进。最后,当在MS-Marco数据集上微调之前用作预训练时,我们的技术在Beir基准上获得最先进的结果。
translated by 谷歌翻译
密集的检索方法可以克服词汇差距并导致显着改善的搜索结果。但是,它们需要大量的培训数据,这些数据不适用于大多数域。如前面的工作所示(Thakur等,2021b),密集检索的性能在域移位下严重降低。这限制了密集检索方法的使用,只有几个具有大型训练数据集的域。在本文中,我们提出了一种新颖的无监督域适配方法生成伪标签(GPL),其将查询发生器与来自跨编码器的伪标记相结合。在六种代表性域专用数据集中,我们发现所提出的GPL可以优于箱子外的最先进的密集检索方法,最高可达8.9点NDCG @ 10。 GPL需要来自目标域的少(未标记)数据,并且在其培训中比以前的方法更强大。我们进一步调查了六种最近训练方法在检索任务的域改编方案中的作用,其中只有三种可能会产生改善的结果。最好的方法,Tsdae(Wang等,2021)可以与GPL结合,在六个任务中产生了1.0点NDCG @ 10的另一个平均改善。
translated by 谷歌翻译
Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dualencoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system greatly by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks. 1 * Equal contribution 1 The code and trained models have been released at https://github.com/facebookresearch/DPR.
translated by 谷歌翻译
对于开放式域问题的密集检索已被证明通过在问题通道对的大型数据集上培训来实现令人印象深刻的性能。我们调查是否可以以自我监督的方式学习密集的检索,并有效地应用没有任何注释。我们观察到这种情况下的检索斗争的现有借用模型,并提出了一种设计用于检索的新预制方案:重复跨度检索。我们在文档中使用经常性跨度来创建用于对比学习的伪示例。由此产生的模型 - 蜘蛛 - 在广泛的ODQA数据集上没有任何示例,并且与BM25具有竞争力,具有强烈的稀疏基线。此外,蜘蛛通常优于DPR在其他数据集的问题上培训的DPR培训的强大基线。我们将蜘蛛与BM25结合的混合猎犬改进了所有数据集的组件,并且通常与域中DPR模型具有竞争力,这些模型培训数万例培训。
translated by 谷歌翻译
大型语言模型在各种任务上显示出令人印象深刻的几次结果。但是,当知识是此类结果的关键时,就像问题回答和事实检查之类的任务一样,似乎需要存储知识的大量参数计数。众所周知,检索增强模型可以在不需要多个参数的情况下在知识密集的任务上表现出色,但是目前尚不清楚它们是否在几个弹药设置中工作。在这项工作中,我们介绍了地图集,这是一个经过精心设计和预先训练的增强语言模型,能够通过很少的培训示例学习知识密集型任务。我们对包括MMLU,苏格兰短裙和归类等各种任务进行评估,并研究文档索引内容的影响,表明它可以很容易地进行更新。值得注意的是,在自然问题上仅使用64个示例在自然问题上达到超过42 \%的准确性,尽管参数少了50倍,但比540B参数模型的表现优于540b参数模型。
translated by 谷歌翻译
我们介绍了Art,这是一种新的语料库级自动编码方法,用于培训密集检索模型,不需要任何标记的培训数据。密集的检索是开放域任务(例如Open QA)的核心挑战,在该任务中,最先进的方法通常需要大量的监督数据集,并具有自定义的硬性采矿和肯定式示例。相反,艺术品仅需要访问未配对的投入和输出(例如问题和潜在的答案文件)。它使用新的文档 - 重新定义自动编码方案,其中(1)输入问题用于检索一组证据文档,并且(2)随后使用文档来计算重建原始问题的概率。基于问题重建的检索培训可以有效地学习文档和问题编码器,以后可以将其纳入完整的QA系统中,而无需任何进一步的填充。广泛的实验表明,ART在多个QA检索基准测试基准上获得最先进的结果,并且仅来自预训练的语言模型的一般初始化,从而消除了对标记的数据和特定于任务的损失的需求。
translated by 谷歌翻译
Bi-encoders and cross-encoders are widely used in many state-of-the-art retrieval pipelines. In this work we study the generalization ability of these two types of architectures on a wide range of parameter count on both in-domain and out-of-domain scenarios. We find that the number of parameters and early query-document interactions of cross-encoders play a significant role in the generalization ability of retrieval models. Our experiments show that increasing model size results in marginal gains on in-domain test sets, but much larger gains in new domains never seen during fine-tuning. Furthermore, we show that cross-encoders largely outperform bi-encoders of similar size in several tasks. In the BEIR benchmark, our largest cross-encoder surpasses a state-of-the-art bi-encoder by more than 4 average points. Finally, we show that using bi-encoders as first-stage retrievers provides no gains in comparison to a simpler retriever such as BM25 on out-of-domain tasks. The code is available at https://github.com/guilhermemr04/scaling-zero-shot-retrieval.git
translated by 谷歌翻译
当前的密集文本检索模型面临两个典型的挑战。首先,他们采用暹罗双重编码架构来独立编码查询和文档,以快速索引和搜索,同时忽略了较细粒度的术语互动。这导致了次优的召回表现。其次,他们的模型培训高度依赖于负面抽样技术,以在其对比损失中构建负面文档。为了应对这些挑战,我们提出了对抗猎犬速率(AR2),它由双重编码猎犬加上跨编码器等级组成。这两种模型是根据最小群体对手的共同优化的:检索员学会了检索负面文件以欺骗排名者,而排名者学会了对包括地面和检索的候选人进行排名,并提供渐进的直接反馈对双编码器检索器。通过这款对抗性游戏,猎犬逐渐生产出更难的负面文件来训练更好的排名者,而跨编码器排名者提供了渐进式反馈以改善检索器。我们在三个基准测试基准上评估AR2。实验结果表明,AR2始终如一地胜过现有的致密回收者方法,并在所有这些方法上实现了新的最新结果。这包括对自然问题的改进R@5%至77.9%(+2.1%),Triviaqa R@5%至78.2%(+1.4)和MS-Marco MRR@10%至39.5%(+1.3%)。代码和型号可在https://github.com/microsoft/ar2上找到。
translated by 谷歌翻译
Systems for knowledge-intensive tasks such as open-domain question answering (QA) usually consist of two stages: efficient retrieval of relevant documents from a large corpus and detailed reading of the selected documents to generate answers. Retrievers and readers are usually modeled separately, which necessitates a cumbersome implementation and is hard to train and adapt in an end-to-end fashion. In this paper, we revisit this design and eschew the separate architecture and training in favor of a single Transformer that performs Retrieval as Attention (ReAtt), and end-to-end training solely based on supervision from the end QA task. We demonstrate for the first time that a single model trained end-to-end can achieve both competitive retrieval and QA performance, matching or slightly outperforming state-of-the-art separately trained retrievers and readers. Moreover, end-to-end adaptation significantly boosts its performance on out-of-domain datasets in both supervised and unsupervised settings, making our model a simple and adaptable solution for knowledge-intensive tasks. Code and models are available at https://github.com/jzbjyb/ReAtt.
translated by 谷歌翻译
及时调整尝试更新预训练模型中的一些特定任务参数。它的性能与在语言理解和发电任务上的完整参数设置的微调相当。在这项工作中,我们研究了迅速调整神经文本检索器的问题。我们引入参数效率的及时调整,以调整跨内域,跨域和跨主题设置的文本检索。通过广泛的分析,我们表明该策略可以通过基于微调的检索方法来减轻两个问题 - 参数 - 信息和弱推广性。值得注意的是,它可以显着改善检索模型的零零弹性概括。通过仅更新模型参数的0.1%,及时调整策略可以帮助检索模型获得比所有参数更新的传统方法更好的概括性能。最后,为了促进回猎犬的跨主题概括性的研究,我们策划并发布了一个学术检索数据集,其中包含18K查询的87个主题,使其成为迄今为止特定于特定于主题的主题。
translated by 谷歌翻译
We study the problem of retrieval with instructions, where users of a retrieval system explicitly describe their intent along with their queries. We aim to develop a general-purpose task-aware retrieval system using multi-task instruction tuning, which can follow human-written instructions to find the best documents for a given query. We introduce the first large-scale collection of approximately 40 retrieval datasets with instructions, BERRI, and present TART, a multi-task retrieval system trained on BERRI with instructions. TART shows strong capabilities to adapt to a new retrieval task via instructions and advances the state of the art on two zero-shot retrieval benchmarks, BEIR and LOTTE, outperforming models up to three times larger. We further introduce a new evaluation setup, X^2-Retrieval to better reflect real-world scenarios, where diverse domains and tasks are pooled and a system needs to find documents aligning users' intents. In this setup, TART significantly outperforms competitive baselines, further demonstrating the effectiveness of guiding retrieval with instructions.
translated by 谷歌翻译
我们提出了一种以最小计算成本提高广泛检索模型的性能的框架。它利用由基本密度检索方法提取的预先提取的文档表示,并且涉及训练模型以共同评分每个查询的一组检索到的候选文档,同时在其他候选的上下文中暂时转换每个文档的表示。以及查询本身。当基于其与查询的相似性进行评分文档表示时,该模型因此意识到其“对等”文档的表示。我们表明,我们的方法导致基本方法的检索性能以及彼此隔离的评分候选文档进行了大量改善,如在一对培训环境中。至关重要的是,与基于伯特式编码器的术语交互重型器不同,它在运行时在任何第一阶段方法的顶部引发可忽略不计的计算开销,允许它与任何最先进的密集检索方法容易地结合。最后,同时考虑给定查询的一组候选文档,可以在检索中进行额外的有价值的功能,例如评分校准和减轻排名中的社会偏差。
translated by 谷歌翻译
Dense retrieval aims to map queries and passages into low-dimensional vector space for efficient similarity measuring, showing promising effectiveness in various large-scale retrieval tasks. Since most existing methods commonly adopt pre-trained Transformers (e.g. BERT) for parameter initialization, some work focuses on proposing new pre-training tasks for compressing the useful semantic information from passages into dense vectors, achieving remarkable performances. However, it is still challenging to effectively capture the rich semantic information and relations about passages into the dense vectors via one single particular pre-training task. In this work, we propose a multi-task pre-trained model, MASTER, that unifies and integrates multiple pre-training tasks with different learning objectives under the bottlenecked masked autoencoder architecture. Concretely, MASTER utilizes a multi-decoder architecture to integrate three types of pre-training tasks: corrupted passages recovering, related passage recovering and PLMs outputs recovering. By incorporating a shared deep encoder, we construct a representation bottleneck in our architecture, compressing the abundant semantic information across tasks into dense vectors. The first two types of tasks concentrate on capturing the semantic information of passages and relationships among them within the pre-training corpus. The third one can capture the knowledge beyond the corpus from external PLMs (e.g. GPT-2). Extensive experiments on several large-scale passage retrieval datasets have shown that our approach outperforms the previous state-of-the-art dense retrieval methods. Our code and data are publicly released in https://github.com/microsoft/SimXNS
translated by 谷歌翻译
深度及时调整(DPT)在大多数自然语言处理〜(NLP)任务中取得了巨大成功。然而,在微调〜(ft)仍然占主导地位的密集检索中,它并没有得到很好的评价。当使用相同的骨干模型〜(例如,Roberta)部署多个检索任务时,基于FT的方法在部署成本方面是不友好的:每个新的检索模型都需要在不重复使用的情况下反复部署骨干模型。为了在这种情况下降低部署成本,这项工作调查了在密集检索中应用DPT。面临的挑战是,直接在密集检索中直接应用DPT在很大程度上表现不佳。为了弥补性能下降,我们建议针对基于DPT的检索器的两种模型不合时宜的和任务不足的策略,即以检索为导向的中间体预处理和统一的负面采矿,作为一种一般方法,可以与任何预先培训的语言模型兼容和检索任务。实验结果表明,所提出的方法(称为DPTDR)在MS-Marco和自然问题上都优于先前的最新模型。我们还进行消融研究以检查每种策略在DPTDR中的有效性。我们认为,这项工作有助于该行业,因为它节省了巨大的部署和成本,并增加了计算资源的实用性。我们的代码可在https://github.com/tangzhy/dptdr上找到。
translated by 谷歌翻译