在通用游戏中学习是不稳定的,并且经常导致社会上不受欢迎(占主导地位)的结果。为了减轻这种情况,通过对手的学习意识(LOLA)通过计算每个代理人对对手预期的学习步骤的影响,从而介绍了对手的对手。但是,原始的Lola配方(和后续工作)是不一致的,因为Lola将其他代理商模仿为天真的学习者而不是Lola代理商。在以前的工作中,这种不一致被认为是萝拉未能保留稳定固定点(SFP)的原因。首先,我们将一致性形式化,并表明高阶Lola(Hola)如果汇聚解决了Lola的不一致问题。其次,我们纠正了Sch \“ Afer and Anandkumar(2019)在文献中提出的主张,证明了竞争性梯度下降(CGD)并未作为系列扩展(并且未能解决一致性问题)恢复Hola。第三,我们提出了一种称为一致LOLA(COLA)的新方法,该方法学习在相互对手塑造下保持一致的更新功能。它不需要二阶导数,并且即使Hola无法收敛,也需要一致的更新功能。但是,我们也证明了这一点即使是一致的更新功能也不能保留SFP,这与假设相矛盾:这种缺点是由Lola的不一致引起的。最后,在一系列通用游戏的经验评估中,我们发现可乐找到了亲社的解决方案,并且在更广泛的情况下会融合。与Hola和Lola相比,学习率的范围。我们以简单游戏的理论结果支持后一个发现。
translated by 谷歌翻译
In general-sum games, the interaction of self-interested learning agents commonly leads to collectively worst-case outcomes, such as defect-defect in the iterated prisoner's dilemma (IPD). To overcome this, some methods, such as Learning with Opponent-Learning Awareness (LOLA), shape their opponents' learning process. However, these methods are myopic since only a small number of steps can be anticipated, are asymmetric since they treat other agents as naive learners, and require the use of higher-order derivatives, which are calculated through white-box access to an opponent's differentiable learning algorithm. To address these issues, we propose Model-Free Opponent Shaping (M-FOS). M-FOS learns in a meta-game in which each meta-step is an episode of the underlying inner game. The meta-state consists of the inner policies, and the meta-policy produces a new inner policy to be used in the next episode. M-FOS then uses generic model-free optimisation methods to learn meta-policies that accomplish long-horizon opponent shaping. Empirically, M-FOS near-optimally exploits naive learners and other, more sophisticated algorithms from the literature. For example, to the best of our knowledge, it is the first method to learn the well-known Zero-Determinant (ZD) extortion strategy in the IPD. In the same settings, M-FOS leads to socially optimal outcomes under meta-self-play. Finally, we show that M-FOS can be scaled to high-dimensional settings.
translated by 谷歌翻译
我们考虑战略设置,其中几个用户在重复的在线互动中聘用,辅助最小化的代理商代表他们反复发挥“游戏”。我们研究了代理人的重复游戏的动态和平均结果,并将其视为诱导用户之间的元游戏。我们的主要焦点是用户可以在此元游戏中从“操纵”他们自己的代理商中可以受益于他们自己的代理商。我们正式定义了普通游戏的这种“用户代理元荟萃游戏”模型,讨论了自动化代理动态的不同概念下的属性,并分析了2x2游戏中用户的均衡,其中动态收敛到a单均衡。
translated by 谷歌翻译
当今许多大型系统的设计,从交通路由环境到智能电网,都依赖游戏理论平衡概念。但是,随着$ n $玩家游戏的大小通常会随着$ n $而成倍增长,标准游戏理论分析实际上是不可行的。最近的方法通过考虑平均场游戏,匿名$ n $玩家游戏的近似值,在这种限制中,玩家的数量是无限的,而人口的状态分布,而不是每个单独的球员的状态,是兴趣。然而,迄今为止研究最多的平均场平衡的平均场nash平衡的实际可计算性通常取决于有益的非一般结构特性,例如单调性或收缩性能,这是已知的算法收敛所必需的。在这项工作中,我们通过开发均值相关和与粗相关的平衡的概念来研究平均场比赛的替代途径。我们证明,可以使用三种经典算法在\ emph {ash All Games}中有效地学习它们,而无需对游戏结构进行任何其他假设。此外,我们在文献中已经建立了对应关系,从而获得了平均场 - $ n $玩家过渡的最佳范围,并经验证明了这些算法在简单游戏中的收敛性。
translated by 谷歌翻译
我们在无限地平线上享受多智能经纪增强学习(Marl)零汇率马尔可夫游戏。我们专注于分散的Marl的实用性但具有挑战性的环境,其中代理人在没有集中式控制员的情况下做出决定,但仅根据自己的收益和当地行动进行了协调。代理商不需要观察对手的行为或收益,可能甚至不忘记对手的存在,也不得意识到基础游戏的零金额结构,该环境也称为学习文学中的彻底解散游戏。在本文中,我们开发了一种彻底的解耦Q学习动态,既合理和收敛则:当对手遵循渐近静止战略时,学习动态会收敛于对对手战略的最佳反应;当两个代理采用学习动态时,它们会收敛到游戏的纳什均衡。这种分散的环境中的关键挑战是从代理商的角度来看环境的非公平性,因为她自己的回报和系统演变都取决于其他代理人的行为,每个代理商同时和独立地互补她的政策。要解决此问题,我们开发了两个时间尺度的学习动态,每个代理会更新她的本地Q函数和value函数估计,后者在较慢的时间内发生。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
我们考虑使用有限的地平线上具有随机动力学的通用N-N-玩家线性季度游戏,并证明了自然策略梯度方法与NASH平衡的全球收敛性。为了证明该方法的收敛性,我们需要系统中有一定数量的噪声。我们给出了一个条件,基本上是在模型参数方面对噪声的协方差的下限,以确保收敛。我们通过数值实验说明了我们的结果,以表明即使在策略梯度方法可能不会在确定性设置中收敛的情况下,噪声的添加也会导致收敛。
translated by 谷歌翻译
经验和实验证据表明,人工智能算法学会收取超竞争价格。在本文中,我们开发了一种理论模型来通过自适应学习算法研究勾结。使用流体近似技术,我们表征了一般游戏的连续时间学习成果,并确定勾结的主要驱动力:协调偏见。在一个简单的主导策略游戏中,我们展示了算法估计之间的相关性如何导致持续的偏见,从长远来看持续犯罪行动。我们证明,使用反事实收益来告知其更新的算法避免了这种偏见并融合了主导策略。我们设计了一种带有反馈的机制:设计师揭示了事前信息以帮助反事实计算。我们表明,这种机制实现了社会最佳。最后,我们将我们的框架应用于文献中研究和拍卖的两个模拟,并分析结果合理化。
translated by 谷歌翻译
许多经济比赛和机器学习方法可以作为竞争优化问题,其中多个代理可以最大限度地减少其各自的目标函数,这取决于所有代理的行动。虽然梯度下降是单代理优化的可靠基本工作,但它通常会导致竞争优化的振荡。在这项工作中,我们提出了PolyATrix竞争梯度下降(PCGD)作为解决涉及任意数量的代理的通用和竞争优化的方法。我们的方法的更新是通过二次正则化的局部Polypatrix近似的纳什均衡,并且可以通过求解方程的线性系统有效地计算。我们证明了PCGD的本地融合以获得$ N $ -Player General Sum Games的稳定定点,并显示它不需要将步长调整到玩家交互的强度。我们使用PCGD优化多功能钢筋学习的政策,并展示其在蛇,马尔可夫足球和电力市场游戏中的优势。由PCGD优先效果培训的代理经过培训,具有同步梯度下降,辛渐变调整和蛇和马尔可夫足球比赛的Extragradient以及电力市场游戏,PCGD列达速度比同时梯度下降和自特殊方法。
translated by 谷歌翻译
我们研究多个代理商在多目标环境的同时学习的问题。具体来说,我们考虑两种药剂重复播放一个多目标的正常形式的游戏。在这样的游戏,从联合行动所产生的收益都向量值。以基于效用的方法,我们假设效用函数存在映射向量标公用事业和考虑旨在最大限度地提高预期收益载体的效用代理。作为代理商不一定知道他们的对手的效用函数或策略,他们必须学会互动的最佳策略对方。为了帮助代理商在适当的解决办法到达,我们介绍四种新型偏好通信协议双方的合作以及自身利益的沟通。每一种方法描述了一个代理在他们的行动以及如何另一代理响应通信偏好的特定协议。这些协议是一组对不沟通基线代理5个标杆游戏随后对其进行评估。我们发现,偏好通信可以彻底改变学习的过程,并导致其没有在此设置先前观测环纳什均衡的出现。另外,还要在那里代理商必须学会当通信的通信方案。对于与纳什均衡游戏的代理,我们发现通信可以是有益的,但很难知道什么时候剂有不同的最佳平衡。如果不是这种情况,代理变得冷漠通信。在游戏没有纳什均衡,我们的结果表明,整个学习率的差异。当使用更快的学习者,我们观察到明确的沟通,在50%左右的时间变得越来越普遍,因为它可以帮助他们在学习的妥协联合政策。较慢的学生保留这种模式在较小的程度,但显示增加的冷漠。
translated by 谷歌翻译
几种广泛使用的一阶马鞍点优化方法将衍生天然衍生时的梯度下降成本(GDA)方法的相同连续时间常分等式(ODE)。然而,即使在简单的双线性游戏上,它们的收敛性也很差异。我们使用一种来自流体动力学的技术,称为高分辨率微分方程(HRDE)来设计几个骑马点优化方法的杂散。在双线性游戏中,派生HRDE的收敛性属性对应于起始离散方法的收敛性。使用这些技术,我们表明乐观梯度下降的HRDE具有最后迭代单调变分不等式的迭代收敛。据我们所知,这是第一个连续时间动态,用于收敛此类常规设置。此外,我们提供了ogda方法的最佳迭代收敛的速率,仅依靠单调运营商的一阶平滑度。
translated by 谷歌翻译
我们开发了一个统一的随机近似框架,用于分析游戏中多学院在线学习的长期行为。我们的框架基于“原始偶尔”,镜像的Robbins-Monro(MRM)模板,该模板涵盖了各种各样的流行游戏理论学习算法(梯度方法,乐观的变体,Exp3算法,用于基于付费的反馈,在有限游戏等中)。除了提供这些算法的综合视图外,提出的MRM蓝图还使我们能够在连续和有限的游戏中获得渐近和有限时间的广泛新收敛结果。
translated by 谷歌翻译
计算NASH平衡策略是多方面强化学习中的一个核心问题,在理论和实践中都受到广泛关注。但是,到目前为止,可证明的保证金仅限于完全竞争性或合作的场景,或者在大多数实际应用中实现难以满足的强大假设。在这项工作中,我们通过调查Infinite-Horizo​​n \ Emph {对抗性团队Markov Games},这是一场自然而充分动机的游戏,其中一组相同兴奋的玩家 - 在没有任何明确的情况下,这是一个自然而有动机的游戏,这是一场自然而有动机的游戏,而偏离了先前的结果。协调或交流 - 正在与对抗者竞争。这种设置允许对零和马尔可夫潜在游戏进行统一处理,并作为模拟更现实的战略互动的一步,这些互动具有竞争性和合作利益。我们的主要贡献是第一种计算固定$ \ epsilon $ - Approximate Nash Equilibria在对抗性团队马尔可夫游戏中具有计算复杂性的算法,在游戏的所有自然参数中都是多项式的,以及$ 1/\ epsilon $。拟议的算法特别自然和实用,它基于为团队中的每个球员执行独立的政策梯度步骤,并与对手侧面的最佳反应同时;反过来,通过解决精心构造的线性程序来获得对手的政策。我们的分析利用非标准技术来建立具有非convex约束的非线性程序的KKT最佳条件,从而导致对诱导的Lagrange乘数的自然解释。在此过程中,我们大大扩展了冯·斯坦格尔(Von Stengel)和科勒(GEB`97)引起的对抗(正常形式)团队游戏中最佳政策的重要特征。
translated by 谷歌翻译
用于解决无约束光滑游戏的两个最突出的算法是经典随机梯度下降 - 上升(SGDA)和最近引入的随机共识优化(SCO)[Mescheder等,2017]。已知SGDA可以收敛到特定类别的游戏的静止点,但是当前的收敛分析需要有界方差假设。 SCO用于解决大规模对抗问题,但其收敛保证仅限于其确定性变体。在这项工作中,我们介绍了预期的共同胁迫条件,解释了它的好处,并在这种情况下提供了SGDA和SCO的第一次迭代收敛保证,以解决可能是非单调的一类随机变分不等式问题。我们将两种方法的线性会聚到解决方案的邻域时,当它们使用恒定的步长时,我们提出了富有识别的步骤化切换规则,以保证对确切解决方案的融合。此外,我们的收敛保证在任意抽样范式下担保,因此,我们对迷你匹配的复杂性进行了解。
translated by 谷歌翻译
尽管自1970年代以来就已经知道,普通付款游戏中的全球最佳策略概况是纳什均衡,但全球最优性是严格的要求,它限制了结果的适用性。在这项工作中,我们表明任何本地最佳的对称策略概况也是(全局)NASH平衡。此外,我们证明了这一结果对通用收益和本地最佳的扰动是可靠的。应用于机器学习,我们的结果为任何梯度方法提供了全球保证,该方法在对称策略空间中找到了局部最佳。尽管该结果表明单方面偏差的稳定性,但我们仍然确定了广泛的游戏类别,这些游戏混合了当地的最佳选择,在不对称的偏差下是不稳定的。我们通过在一系列对称游戏中运行学习算法来分析不稳定性的普遍性,并通过讨论结果对多代理RL,合作逆RL和分散的POMDP的适用性来得出结论。
translated by 谷歌翻译
最近的多人游戏的理论和应用方面的最新进步,从电子运动到多种子体生成的对抗网络,我们专注于团队零和游戏中的最大优化。在这类游戏中,玩家分为两支队伍,在同一支队内等等,对手团队的相反标志。与TextBook二手零和游戏不同,在我们的类中找到纳什均衡可以被证明是CLS-Hard,即,它不太可能具有用于计算NASH均衡的多项式时间算法。此外,在该广义框架中,使用梯度下降上升(GDA),其乐观变体和额外梯度,我们建立了即使是渐近的最后一次迭代或时间平均收敛到纳什均衡。具体来说,我们展示了一个诱导效用是\ emph {non}的团队游戏系列\ \ emph {non}有吸引力的\ {per-se}混合的纳什均衡,作为底层优化景观的严格鞍点。利用控制理论的技术,我们通过设计局部收敛的修改GDA来补充这些负面结果,以纳入均衡。最后,我们讨论了我们的框架与AI架构的联系,其中与多助理生成对冲网络这样的团队竞争结构。
translated by 谷歌翻译
本文研究了用于多机构增强学习的政策优化算法。我们首先在全信息设置中提出了针对两人零和零和马尔可夫游戏的算法框架,其中每次迭代均使用一个策略更新,使用某个矩阵游戏算法在每个状态下进行策略更新,并带有一个带有特定的值更新步骤学习率。该框架统一了许多现有和新的政策优化算法。我们表明,只要矩阵游戏算法在每种状态下,该算法的州平均策略会收敛到游戏的近似NASH平衡(NE),只要矩阵游戏算法在每个状态下都具有低称重的遗憾价值更新。接下来,我们证明,该框架与每个状态(和平滑值更新)的乐观跟踪定制领导者(oftrl)算法可以找到$ \ Mathcal {\ widetilde {o}}(t^{ - 5 /6})$ t $迭代中的$近似NE,并且具有稍微修改的值更新规则的类似算法可实现更快的$ \ Mathcal {\ widetilde {o}}}}(t^{ - 1})$收敛率。这些改进了当前最佳$ \ Mathcal {\ widetilde {o}}}(t^{ - 1/2})$对称策略优化类型算法的速率。我们还将此算法扩展到多玩家通用-SUM Markov游戏,并显示$ \ MATHCAL {\ widetilde {o}}}(t^{ - 3/4})$收敛率与粗相关均衡(CCE)。最后,我们提供了一个数值示例来验证我们的理论并研究平滑价值更新的重要性,并发现使用“渴望”的价值更新(等同于独立的自然策略梯度算法)也可能会大大减慢收敛性,即使在$ h = 2 $层的简单游戏。
translated by 谷歌翻译
钢筋学习(RL)最近在许多人工智能应用中取得了巨大成功。 RL的许多最前沿应用涉及多个代理,例如,下棋和去游戏,自主驾驶和机器人。不幸的是,古典RL构建的框架不适合多代理学习,因为它假设代理的环境是静止的,并且没有考虑到其他代理的适应性。在本文中,我们介绍了动态环境中的多代理学习的随机游戏模型。我们专注于随机游戏的简单和独立学习动态的发展:每个代理商都是近视,并为其他代理商的战略选择最佳响应类型的行动,而不与对手进行任何协调。为随机游戏开发收敛最佳响应类型独立学习动态有限的进展。我们展示了我们最近提出的简单和独立的学习动态,可保证零汇率随机游戏的融合,以及对此设置中的动态多代理学习的其他同时算法的审查。一路上,我们还重新审视了博弈论和RL文学的一些古典结果,以适应我们独立的学习动态的概念贡献,以及我们分析的数学诺克特。我们希望这篇审查文件成为在博弈论中研究独立和自然学习动态的重新训练的推动力,对于具有动态环境的更具挑战性的环境。
translated by 谷歌翻译
深度加强学习(RL)的最新进展导致许多2人零和游戏中的相当大的进展,如去,扑克和星际争霸。这种游戏的纯粹对抗性质允许概念上简单地应用R1方法。然而,现实世界的设置是许多代理商,代理交互是复杂的共同利益和竞争方面的混合物。我们认为外交,一个旨在突出由多种代理交互导致的困境的7人棋盘游戏。它还具有大型组合动作空间和同时移动,这对RL算法具有具有挑战性。我们提出了一个简单但有效的近似最佳响应操作员,旨在处理大型组合动作空间并同时移动。我们还介绍了一系列近似虚构游戏的政策迭代方法。通过这些方法,我们成功地将RL申请到外交:我们认为我们的代理商令人信服地令人信服地表明,游戏理论均衡分析表明新过程产生了一致的改进。
translated by 谷歌翻译
当学习者与其他优化代理进行连续游戏时,我们研究了遗憾最小化的问题:在这种情况下,如果所有玩家都遵循一种无重组算法,则相对于完全对手环境,可能会达到较低的遗憾。我们在变异稳定的游戏(包括所有凸孔和单调游戏的连续游戏)的背景下研究了这个问题,当玩家只能访问其个人回报梯度时。如果噪音是加性的,那么游戏理论和纯粹的对抗性设置也会获得类似的遗憾保证。但是,如果噪声是乘法的,我们表明学习者实际上可以持续遗憾。我们通过学习速率分离的乐观梯度方案实现了更快的速度 - 也就是说,该方法的外推和更新步骤被调整为不同的时间表,具体取决于噪声配置文件。随后,为了消除对精致的超参数调整的需求,我们提出了一种完全自适应的方法,可以在最坏的和最佳案例的遗憾保证之间平稳地插入。
translated by 谷歌翻译