Federated Learning (FL) is currently the most widely adopted framework for collaborative training of (deep) machine learning models under privacy constraints. Albeit it's popularity, it has been observed that Federated Learning yields suboptimal results if the local clients' data distributions diverge. To address this issue, we present Clustered Federated Learning (CFL), a novel Federated Multi-Task Learning (FMTL) framework, which exploits geometric properties of the FL loss surface, to group the client population into clusters with jointly trainable data distributions. In contrast to existing FMTL approaches, CFL does not require any modifications to the FL communication protocol to be made, is applicable to general non-convex objectives (in particular deep neural networks) and comes with strong mathematical guarantees on the clustering quality. CFL is flexible enough to handle client populations that vary over time and can be implemented in a privacy preserving way. As clustering is only performed after Federated Learning has converged to a stationary point, CFL can be viewed as a post-processing method that will always achieve greater or equal performance than conventional FL by allowing clients to arrive at more specialized models. We verify our theoretical analysis in experiments with deep convolutional and recurrent neural networks on commonly used Federated Learning datasets.
translated by 谷歌翻译
聚集的联合学习(FL)已显示通过将客户分组为群集,从而产生有希望的结果。这在单独的客户群在其本地数据的分布方面有显着差异的情况下特别有效。现有的集群FL算法实质上是在试图将客户群体组合在一起,以便同一集群中的客户可以利用彼此的数据来更好地执行联合学习。但是,先前的群集FL算法试图在培训期间间接学习这些分布相似性,这可能会很耗时,因为可能需要许多回合的联合学习,直到群集的形成稳定为止。在本文中,我们提出了一种新的联合学习方法,该方法直接旨在通过分析客户数据子空间之间的主要角度来有效地识别客户之间的分布相似性。每个客户端都以单一的方式在其本地数据上应用截断的奇异值分解(SVD)步骤,以得出一小部分主向量,该量提供了一个签名,可简洁地捕获基础分布的主要特征。提供了一组主要的主向量,以便服务器可以直接识别客户端之间的分布相似性以形成簇。这是通过比较这些主要向量跨越的客户数据子空间之间主要角度的相似性来实现的。该方法提供了一个简单而有效的集群FL框架,该框架解决了广泛的数据异质性问题,而不是标签偏斜的更简单的非iids形式。我们的聚类FL方法还可以为非凸目标目标提供融合保证。我们的代码可在https://github.com/mmorafah/pacfl上找到。
translated by 谷歌翻译
Federated Learning allows multiple parties to jointly train a deep learning model on their combined data, without any of the participants having to reveal their local data to a centralized server. This form of privacy-preserving collaborative learning however comes at the cost of a significant communication overhead during training. To address this problem, several compression methods have been proposed in the distributed training literature that can reduce the amount of required communication by up to three orders of magnitude. These existing methods however are only of limited utility in the Federated Learning setting, as they either only compress the upstream communication from the clients to the server (leaving the downstream communication uncompressed) or only perform well under idealized conditions such as iid distribution of the client data, which typically can not be found in Federated Learning. In this work, we propose Sparse Ternary Compression (STC), a new compression framework that is specifically designed to meet the requirements of the Federated Learning environment. STC extends the existing compression technique of top-k gradient sparsification with a novel mechanism to enable downstream compression as well as ternarization and optimal Golomb encoding of the weight updates. Our experiments on four different learning tasks demonstrate that STC distinctively outperforms Federated Averaging in common Federated Learning scenarios where clients either a) hold non-iid data, b) use small batch sizes during training, or where c) the number of clients is large and the participation rate in every communication round is low. We furthermore show that even if the clients hold iid data and use medium sized batches for training, STC still behaves paretosuperior to Federated Averaging in the sense that it achieves fixed target accuracies on our benchmarks within both fewer training iterations and a smaller communication budget. These results advocate for a paradigm shift in Federated optimization towards high-frequency low-bitwidth communication, in particular in bandwidth-constrained learning environments.
translated by 谷歌翻译
知识共享和模型个性化是应对联邦学习(FL)中非IID挑战的重要组成部分。大多数现有的FL方法侧重于两个极端:1)学习共享模型,以使用非IID数据为所有客户提供服务,以及2)为每个客户(即个性化fl)学习个性化模型。有一个权衡解决方案,即群集或集群个性化的FL,旨在将相似的客户聚集到一个集群中,然后在集群中为所有客户学习共享模型。本文是通过将群集群集制定为可以统一现有方法的双层优化框架来重新审视群集的研究。我们提出了一个新的理论分析框架,以通过考虑客户之间的凝聚力来证明融合。此外,我们以一种称为加权聚类联合学习(WECFL)的算法体现了该框架。经验分析验证了理论结果,并证明了在拟议的集群非IID设置下提出的WECFL的有效性。
translated by 谷歌翻译
联合学习使不同的各方能够在服务器的编排下协作建立全球模型,同时将培训数据保留在客户的设备上。但是,当客户具有异质数据时,性能会受到影响。为了解决这个问题,我们假设尽管数据异质性,但有些客户的数据分布可以集群。在以前的方法中,为了群集客户端,服务器要求客户端同时发送参数。但是,在有大量参与者可能有限的参与者的情况下,这可能是有问题的。为了防止这种瓶颈,我们提出了FLIC(使用增量聚类的联合学习),其中服务器利用客户在联合培训期间发送的客户发送的更新,而不是要求他们同时发送参数。因此,除了经典的联合学习所需的内容外,服务器与客户之间没有任何其他沟通。我们从经验上证明了各种非IID案例,我们的方法成功地按照相同的数据分布将客户分组分组。我们还通过研究其能力在联邦学习过程的早期阶段对客户进行分配的能力来确定FLIC的局限性。我们进一步将对模型的攻击作为数据异质性的一种形式,并从经验上表明,即使恶意客户的比例高于50 \%,FLIC也是针对中毒攻击的强大防御。
translated by 谷歌翻译
数据异构联合学习(FL)系统遭受了两个重要的收敛误差来源:1)客户漂移错误是由于在客户端执行多个局部优化步骤而引起的,以及2)部分客户参与错误,这是一个事实,仅一小部分子集边缘客户参加每轮培训。我们发现其中,只有前者在文献中受到了极大的关注。为了解决这个问题,我们提出了FedVarp,这是在服务器上应用的一种新颖的差异算法,它消除了由于部分客户参与而导致的错误。为此,服务器只是将每个客户端的最新更新保持在内存中,并将其用作每回合中非参与客户的替代更新。此外,为了减轻服务器上的内存需求,我们提出了一种新颖的基于聚类的方差降低算法clusterfedvarp。与以前提出的方法不同,FedVarp和ClusterFedVarp均不需要在客户端上进行其他计算或其他优化参数的通信。通过广泛的实验,我们表明FedVarp优于最先进的方法,而ClusterFedVarp实现了与FedVarp相当的性能,并且记忆要求较少。
translated by 谷歌翻译
传统上,群集联合学习组客户端具有与群集相同的数据分发,以便每个客户端都与一个数据分发唯一关联,并帮助为此分发训练模型。我们将此艰难的关联假设放宽到软群集联合学习,允许每个本地数据集遵循多个源分布的混合。我们提出FEDSoft,在此设置中列出了本地个性化模型和高质量的集群模型。FEDSoft通过使用近端更新限制客户端工作负载,以便在每个通信中只需要从客户端的子集完成一个优化任务。我们在分析和经验上显示,FedSoft有效利用源分布之间的相似性,以了解表现良好的个性化和群集模型。
translated by 谷歌翻译
This study investigates clustered federated learning (FL), one of the formulations of FL with non-i.i.d. data, where the devices are partitioned into clusters and each cluster optimally fits its data with a localized model. We propose a novel clustered FL framework, which applies a nonconvex penalty to pairwise differences of parameters. This framework can automatically identify clusters without a priori knowledge of the number of clusters and the set of devices in each cluster. To implement the proposed framework, we develop a novel clustered FL method called FPFC. Advancing from the standard ADMM, our method is implemented in parallel, updates only a subset of devices at each communication round, and allows each participating device to perform a variable amount of work. This greatly reduces the communication cost while simultaneously preserving privacy, making it practical for FL. We also propose a new warmup strategy for hyperparameter tuning under FL settings and consider the asynchronous variant of FPFC (asyncFPFC). Theoretically, we provide convergence guarantees of FPFC for general nonconvex losses and establish the statistical convergence rate under a linear model with squared loss. Our extensive experiments demonstrate the advantages of FPFC over existing methods.
translated by 谷歌翻译
联合学习允许一组分布式客户端培训私有数据的公共机器学习模型。模型更新的交换由中央实体或以分散的方式管理,例如,由一个区间的。但是,所有客户端的强大概括都使得这些方法不合适,不合适地分布(非IID)数据。我们提出了一个统一的统一方法,在联合学习中的权力下放和个性化,该方法是基于模型更新的定向非循环图(DAG)。客户端代替培训单个全局模型,客户端专门从事来自其他客户端的模型更新的本地数据,而不是依赖于各自数据的相似性。这种专业化从基于DAG的沟通和模型更新的选择隐含地出现。因此,我们启用专业模型的演变,它专注于数据的子集,因此覆盖非IID数据,而不是在基于区块的基于区块的设置中的联合学习。据我们所知,拟议的解决方案是第一个在完全分散的联邦学习中团结的个性化和中毒鲁棒性。我们的评价表明,模型的专业化直接从基于DAG的模型更新通信到三个不同的数据集。此外,与联合平均相比,我们在客户端展示稳定的模型精度和更少的方差。
translated by 谷歌翻译
Modern mobile devices have access to a wealth of data suitable for learning models, which in turn can greatly improve the user experience on the device. For example, language models can improve speech recognition and text entry, and image models can automatically select good photos. However, this rich data is often privacy sensitive, large in quantity, or both, which may preclude logging to the data center and training there using conventional approaches. We advocate an alternative that leaves the training data distributed on the mobile devices, and learns a shared model by aggregating locally-computed updates. We term this decentralized approach Federated Learning.We present a practical method for the federated learning of deep networks based on iterative model averaging, and conduct an extensive empirical evaluation, considering five different model architectures and four datasets. These experiments demonstrate the approach is robust to the unbalanced and non-IID data distributions that are a defining characteristic of this setting. Communication costs are the principal constraint, and we show a reduction in required communication rounds by 10-100× as compared to synchronized stochastic gradient descent.
translated by 谷歌翻译
联邦学习(FL)是一种分布式学习方法,它为医学机构提供了在全球模型中合作的前景,同时保留患者的隐私。尽管大多数医疗中心执行类似的医学成像任务,但它们的差异(例如专业,患者数量和设备)导致了独特的数据分布。数据异质性对FL和本地模型的个性化构成了挑战。在这项工作中,我们研究了FL生产中间半全球模型的一种自适应分层聚类方法,因此具有相似数据分布的客户有机会形成更专业的模型。我们的方法形成了几个群集,这些集群由具有最相似数据分布的客户端组成;然后,每个集群继续分开训练。在集群中,我们使用元学习来改善参与者模型的个性化。我们通过评估我们在HAM10K数据集上的建议方法和极端异质数据分布的HAM10K数据集上的我们提出的方法,将聚类方法与经典的FedAvg和集中式培训进行比较。我们的实验表明,与标准的FL方法相比,分类精度相比,异质分布的性能显着提高。此外,我们表明,如果在群集中应用,则模型会更快地收敛,并且仅使用一小部分数据,却优于集中式培训。
translated by 谷歌翻译
The increasing size of data generated by smartphones and IoT devices motivated the development of Federated Learning (FL), a framework for on-device collaborative training of machine learning models. First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client, due to the inherent heterogeneity of local data distributions. Federated multi-task learning (MTL) approaches can learn personalized models by formulating an opportune penalized optimization problem. The penalization term can capture complex relations among personalized models, but eschews clear statistical assumptions about local data distributions. In this work, we propose to study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions. This assumption encompasses most of the existing personalized FL approaches and leads to federated EM-like algorithms for both client-server and fully decentralized settings. Moreover, it provides a principled way to serve personalized models to clients not seen at training time. The algorithms' convergence is analyzed through a novel federated surrogate optimization framework, which can be of general interest. Experimental results on FL benchmarks show that our approach provides models with higher accuracy and fairness than state-of-the-art methods.
translated by 谷歌翻译
联合学习通过与大量参与者启用学习统计模型的同时将其数据保留在本地客户中,从而提供了沟通效率和隐私的培训过程。但是,将平均损失函数天真地最小化的标准联合学习技术容易受到来自异常值,系统错误标签甚至对手的数据损坏。此外,由于对用户数据隐私的关注,服务提供商通常会禁止使用数据样本的质量。在本文中,我们通过提出自动加权的强大联合学习(ARFL)来应对这一挑战,这是一种新颖的方法,可以共同学习全球模型和本地更新的权重,以提供针对损坏的数据源的鲁棒性。我们证明了关于预测因素和客户权重的预期风险的学习,这指导着强大的联合学习目标的定义。通过将客户的经验损失与最佳P客户的平均损失进行比较,可以分配权重,因此我们可以减少损失较高的客户,从而降低对全球模型的贡献。我们表明,当损坏的客户的数据与良性不同时,这种方法可以实现鲁棒性。为了优化目标函数,我们根据基于块最小化范式提出了一种通信效率算法。我们考虑了不同的深层神经网络模型,在包括CIFAR-10,女权主义者和莎士比亚在内的多个基准数据集上进行实验。结果表明,我们的解决方案在不同的情况下具有鲁棒性,包括标签改组,标签翻转和嘈杂的功能,并且在大多数情况下都优于最先进的方法。
translated by 谷歌翻译
客户端之间的非独立和相同分布(非IID)数据分布被视为降低联合学习(FL)性能的关键因素。处理非IID数据(如个性化FL和联邦多任务学习(FMTL)的几种方法对研究社区有很大兴趣。在这项工作中,首先,我们使用Laplacian正规化制定FMTL问题,明确地利用客户模型之间的关系进行多任务学习。然后,我们介绍了FMTL问题的新视图,首次表明配制的FMTL问题可用于传统的FL和个性化FL。我们还提出了两种算法FEDU和DFEDU,分别解决了通信集中和分散方案中的配制FMTL问题。从理论上讲,我们证明了两种算法的收敛速率实现了用于非凸起目标的强大凸起和载位加速的线性加速。实验,我们表明我们的算法优于FL设置的传统算法FedVG,在FMTL设置中的Mocha,以及个性化流程中的PFEDME和PER-FEDAVG。
translated by 谷歌翻译
我们研究了在分散的点对点环境中培训个性化深度学习模型的问题,重点是客户之间的数据分布在客户之间有所不同,而不同的客户具有不同的本地学习任务。我们研究了协变量和标签变化,我们的贡献是一种算法,对于每个客户,根据本地任务的相似性估计,它都会发现有益的协作。我们的方法不依赖于难以估计的超参数,例如客户群的数量,而是使用基于新颖的自适应八卦算法的软群集分配不断适应网络拓扑。我们在各种设置中测试了所提出的方法,其中数据并非独立且在客户端之间分布相同。实验评估表明,对于此问题设置,所提出的方法的性能优于以前的最新算法,并且在以前的方法失败的情况下处理情况很好。
translated by 谷歌翻译
联邦学习已成为不同领域培训机器学习模型的重要范式。对于诸如图形分类的图形级任务,图也可以被视为一种特殊类型的数据样本,可以收集并存储在单独的本地系统中。类似于其他域,多个本地系统,每个域每个保持一小集图,可以受益于协同训练强大的图形挖掘模型,例如流行的图形神经网络(GNN)。为了为这种努力提供更多的动机,我们分析了不同域的实际图形,以确认它们确实共享了与随机图纸相比统计上显着的某些图形属性。但是,我们还发现,即使来自同一个域或相同的数据集,也发现不同的图表是非IID,这对于图形结构和节点特征。为了处理这一点,我们提出了一种基于GNN的梯度的群集联合学习(GCFL)框架的图表集群联合学习(GCFL)框架,并且理论上可以证明这种群集可以减少本地系统所拥有的图形之间的结构和特征异质性。此外,我们观察到GNN的梯度在GCFL中强制波动,从而阻碍了高质量的聚类,并基于动态时间翘曲(GCFL +)设计了一种基于梯度序列的聚类机制。广泛的实验结果和深入分析证明了我们提出的框架的有效性。
translated by 谷歌翻译
联合学习(FL)是一个分布式的机器学习框架,可以减轻数据孤岛,在该筒仓中,分散的客户在不共享其私人数据的情况下协作学习全球模型。但是,客户的非独立且相同分布的(非IID)数据对训练有素的模型产生了负面影响,并且具有不同本地更新的客户可能会在每个通信回合中对本地梯度造成巨大差距。在本文中,我们提出了一种联合矢量平均(FedVeca)方法来解决上述非IID数据问题。具体而言,我们为与本地梯度相关的全球模型设定了一个新的目标。局部梯度定义为具有步长和方向的双向向量,其中步长为局部更新的数量,并且根据我们的定义将方向分为正和负。在FedVeca中,方向受步尺的影响,因此我们平均双向向量,以降低不同步骤尺寸的效果。然后,我们理论上分析了步骤大小与全球目标之间的关系,并在每个通信循环的步骤大小上获得上限。基于上限,我们为服务器和客户端设计了一种算法,以自适应调整使目标接近最佳的步骤大小。最后,我们通过构建原型系统对不同数据集,模型和场景进行实验,实验结果证明了FedVeca方法的有效性和效率。
translated by 谷歌翻译
联合学习产生了重大兴趣,几乎所有作品都集中在一个“星形”拓扑上,其中节点/设备每个都连接到中央服务器。我们远离此架构,并将其通过网络维度扩展到最终设备和服务器之间存在多个节点的情况。具体而言,我们开发多级混合联合学习(MH-FL),是层内模型学习的混合,将网络视为基于多层群集的结构。 MH-FL认为集群中的节点中的拓扑结构,包括通过设备到设备(D2D)通信形成的本地网络,并假设用于联合学习的半分散式架构。它以协作/协作方式(即,使用D2D交互)在不同网络层处的设备进行编程,以在模型参数上形成本地共识,并将其与树形层次层的层之间的多级参数中继相结合。我们相对于网络拓扑(例如,光谱半径)和学习算法的参数来得出MH-F1的收敛的大界限(例如,不同簇中的D2D圆数的数量)。我们在不同的集群中获得了一系列D2D轮的政策,以保证有限的最佳差距或收敛到全局最佳。然后,我们开发一个分布式控制算法,用于MH-FL在每个集群中调整每个集群的D2D轮,以满足特定的收敛标准。我们在现实世界数据集上的实验验证了我们的分析结果,并展示了MH-FL在资源利用率指标方面的优势。
translated by 谷歌翻译
我们展示了一个联合学习框架,旨在强大地提供具有异构数据的各个客户端的良好预测性能。所提出的方法对基于SuperQualile的学习目标铰接,捕获异构客户端的误差分布的尾统计。我们提出了一种随机训练算法,其与联合平均步骤交织差异私人客户重新重量步骤。该提出的算法支持有限时间收敛保证,保证覆盖凸和非凸面设置。关于联邦学习的基准数据集的实验结果表明,我们的方法在平均误差方面与古典误差竞争,并且在误差的尾统计方面优于它们。
translated by 谷歌翻译
联合学习(FL)是分布式学习的一种变体,其中Edge设备可以协作学习模型,而无需与中央服务器或彼此共享数据。我们将使用公共客户库作为多模型FL的联合设置中同时培训多个独立模型的过程。在这项工作中,我们提出了用于多模型FL的流行FedAvg算法的两个变体,并具有可证明的收敛保证。我们进一步表明,对于相同数量的计算,多模型FL可以比单独训练每个模型具有更好的性能。我们通过在强凸,凸和非凸面设置中进行实验来补充理论结果。
translated by 谷歌翻译