Dynamic game arises as a powerful paradigm for multi-robot planning, for which safety constraint satisfaction is crucial. Constrained stochastic games are of particular interest, as real-world robots need to operate and satisfy constraints under uncertainty. Existing methods for solving stochastic games handle chance constraints using exponential penalties with hand-tuned weights. However, finding a suitable penalty weight is nontrivial and requires trial and error. In this paper, we propose the chance-constrained iterative linear-quadratic stochastic games (CCILQGames) algorithm. CCILQGames solves chance-constrained stochastic games using the augmented Lagrangian method. We evaluate our algorithm in three autonomous driving scenarios, including merge, intersection, and roundabout. Experimental results and Monte Carlo tests show that CCILQGames can generate safe and interactive strategies in stochastic environments.
translated by 谷歌翻译
游戏理论运动计划者是控制多个高度交互式机器人系统的有效解决方案。大多数现有的游戏理论规划师不切实际地假设所有代理都可以使用先验的目标功能知识。为了解决这个问题,我们提出了一个容忍度的退缩水平游戏理论运动计划者,该计划者利用了与意图假设的可能性相互交流。具体而言,机器人传达其目标函数以结合意图。离散的贝叶斯过滤器旨在根据观察到的轨迹与传达意图的轨迹之间的差异来实时推断目标。在仿真中,我们考虑了三种安全至关重要的自主驾驶场景,即超车,车道交叉和交叉点,以证明我们计划者在存在通信网络中存在错误的传输情况下利用替代意图假设来产生安全轨迹的能力。
translated by 谷歌翻译
尽管动态游戏为建模代理的互动提供了丰富的范式,但为现实世界应用程序解决这些游戏通常具有挑战性。许多现实的交互式设置涉及一般的非线性状态和输入约束,它们彼此之间的决策相结合。在这项工作中,我们使用约束的游戏理论框架开发了一个高效且快速的计划者,用于在受限设置中进行交互式计划。我们的关键见解是利用代理的目标和约束功能的特殊结构,这些功能在多代理交互中进行快速和可靠的计划。更确切地说,我们确定了代理成本功能的结构,在该结构下,由此产生的动态游戏是受约束潜在动态游戏的实例。受限的潜在动态游戏是一类游戏,而不是解决一组耦合的约束最佳控制问题,而是通过解决单个约束最佳控制问题来找到NASH平衡。这简化了限制的交互式轨迹计划。我们比较了涉及四个平面代理的导航设置中方法的性能,并表明我们的方法平均比最先进的速度快20倍。我们进一步在涉及一个四型和两个人的导航设置中对我们提出的方法提供了实验验证。
translated by 谷歌翻译
我们研究了覆盖的阶段 - 避免多个代理的动态游戏,其中多个代理相互作用,并且每种希望满足不同的目标条件,同时避免失败状态。 Reach-避免游戏通常用于表达移动机器人运动计划中发现的安全关键最优控制问题。虽然这些运动计划问题存在各种方法,但我们专注于找到时间一致的解决方案,其中计划未来的运动仍然是最佳的,尽管先前的次优行动。虽然摘要,时间一致性封装了一个非常理想的财产:即使机器人早期从计划发出的机器人的运动发散,即,由于例如内在的动态不确定性或外在环境干扰,即使机器人的运动分歧,时间一致的运动计划也保持最佳。我们的主要贡献是一种计算 - 避免多种代理的算法算法,避免呈现时间一致的解决方案。我们展示了我们在两位和三位玩家模拟驾驶场景中的方法,其中我们的方法为所有代理商提供了安全控制策略。
translated by 谷歌翻译
Many autonomous agents, such as intelligent vehicles, are inherently required to interact with one another. Game theory provides a natural mathematical tool for robot motion planning in such interactive settings. However, tractable algorithms for such problems usually rely on a strong assumption, namely that the objectives of all players in the scene are known. To make such tools applicable for ego-centric planning with only local information, we propose an adaptive model-predictive game solver, which jointly infers other players' objectives online and computes a corresponding generalized Nash equilibrium (GNE) strategy. The adaptivity of our approach is enabled by a differentiable trajectory game solver whose gradient signal is used for maximum likelihood estimation (MLE) of opponents' objectives. This differentiability of our pipeline facilitates direct integration with other differentiable elements, such as neural networks (NNs). Furthermore, in contrast to existing solvers for cost inference in games, our method handles not only partial state observations but also general inequality constraints. In two simulated traffic scenarios, we find superior performance of our approach over both existing game-theoretic methods and non-game-theoretic model-predictive control (MPC) approaches. We also demonstrate our approach's real-time planning capabilities and robustness in two hardware experiments.
translated by 谷歌翻译
机器人等系统的安全操作要求它们计划和执行受安全约束的轨迹。当这些系统受到动态的不确定性的影响时,确保不违反限制是具有挑战性的。本文提出了基于受约束差分动态规划(DDP)的附加不确定性和非线性安全约束的安全轨迹,安全轨迹优化和控制方法。在其运动中的机器人的安全性被制定为机会限制了用户所选择的约束满足的概率。通过约束收紧将机会约束转换为DDP制剂中的确定性。为了避免在约束期间的过保守,从受约束的DDP导出的反馈策略的线性控制增益用于预测中的闭环不确定性传播的近似。所提出的算法在三种不同的机器人动态上进行了经验评估,模拟中具有高达12度的自由度。使用物理硬件实现对方法的计算可行性和适用性进行了说明。
translated by 谷歌翻译
在多游戏设置中运行的机器人必须同时对共享环境的人类或机器人代理的环境和行为进行建模。通常使用同时定位和映射(SLAM)进行这种建模;但是,SLAM算法通常忽略了多人相互作用。相比之下,运动计划文献经常使用动态游戏理论来在具有完美本地化的已知环境中明确对多个代理的非合作相互作用进行建模。在这里,我们介绍了GTP-Slam,这是一种基于迭代最佳响应的小说最佳SLAM算法,可以准确执行状态定位和映射重建,同时使用游戏理论先验来捕获未知场景中多个代理之间固有的非合作互动。通过将基本的大满贯问题作为潜在游戏,我们继承了强有力的融合保证。经验结果表明,当部署在现实的交通模拟中时,我们的方法比在广泛的噪声水平上的标准捆绑捆绑调整算法更准确地进行本地化和映射。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
密集的安全导航,城市驾驶环境仍然是一个开放的问题和一个活跃的研究领域。与典型的预测 - 计划方法不同,游戏理论规划考虑了一辆车的计划如何影响另一个车辆的行为。最近的工作表明,在具有非线性目标和约束的普通和游戏中找到当地纳什均衡所需的时间重大改进。当狡辩到驾驶时,这些作品假设场景中的所有车辆一起玩游戏,这可能导致密集流量的难治性计算时间。我们通过假设代理商在他们的观察附近玩游戏的代理商来制定分散的游戏理论规划方法,我们认为我们认为是人类驾驶的更合理的假设。游戏是并行播放的,以进行交互图的所有强烈连接的组件,显着减少了每个游戏中的玩家和约束的数量,从而减少了规划所需的时间。我们证明我们的方法可以通过比较智能驱动程序模型和集中式游戏理论规划在互动数据集中的环形交叉路口时,通过比较智能驱动程序模型和集中式游戏理论规划的性能来实现无碰撞,高效的驾驶。我们的实现可在http://github.com/sisl/decnashplanning获取。
translated by 谷歌翻译
一般而言,融合是人类驱动因素和自治车辆的具有挑战性的任务,特别是在密集的交通中,因为合并的车辆通常需要与其他车辆互动以识别或创造间隙并安全合并。在本文中,我们考虑了强制合并方案的自主车辆控制问题。我们提出了一种新的游戏 - 理论控制器,称为领导者跟随者游戏控制器(LFGC),其中自主EGO车辆和其他具有先验不确定驾驶意图的车辆之间的相互作用被建模为部分可观察到的领导者 - 跟随游戏。 LFGC估计基于观察到的轨迹的其他车辆在线在线,然后预测其未来的轨迹,并计划使用模型预测控制(MPC)来同时实现概率保证安全性和合并目标的自我车辆自己的轨迹。为了验证LFGC的性能,我们在模拟和NGSIM数据中测试它,其中LFGC在合并中展示了97.5%的高成功率。
translated by 谷歌翻译
In order for automated mobile vehicles to navigate in the real world with minimal collision risks, it is necessary for their planning algorithms to consider uncertainties from measurements and environmental disturbances. In this paper, we consider analytical solutions for a conservative approximation of the mutual probability of collision between two robotic vehicles in the presence of such uncertainties. Therein, we present two methods, which we call unitary scaling and principal axes rotation, for decoupling the bivariate integral required for efficient approximation of the probability of collision between two vehicles including orientation effects. We compare the conservatism of these methods analytically and numerically. By closing a control loop through a model predictive guidance scheme, we observe through Monte-Carlo simulations that directly implementing collision avoidance constraints from the conservative approximations remains infeasible for real-time planning. We then propose and implement a convexification approach based on the tightened collision constraints that significantly improves the computational efficiency and robustness of the predictive guidance scheme.
translated by 谷歌翻译
本文开发了一个分布式可区分的动态游戏(DDDG)框架,该框架可以从演示中学习多机器人协调。我们将多机器人协调表示为动态游戏,其中机器人的行为由其自身的动态和目标决定,这也取决于他人的行为。因此,可以通过调整每个机器人的客观和动力学来调整协调。提出的DDDG使每个机器人能够以分布式方式自动调整其单个动力学和目标,从而最大程度地减少其轨迹和演示之间的不匹配。此过程需要前向通道的新分布式设计,在该设计中,所有机器人都协作寻求NASH均衡行为,以及一个向后通行,在该阶段通过通信图传播梯度。我们在仿真中测试了DDDG,并给定不同任务配置的四个小组。结果证明了DDDG从演示中学习多机器人协调的能力
translated by 谷歌翻译
We develop a hierarchical controller for head-to-head autonomous racing. We first introduce a formulation of a racing game with realistic safety and fairness rules. A high-level planner approximates the original formulation as a discrete game with simplified state, control, and dynamics to easily encode the complex safety and fairness rules and calculates a series of target waypoints. The low-level controller takes the resulting waypoints as a reference trajectory and computes high-resolution control inputs by solving an alternative formulation with simplified objectives and constraints. We consider two approaches for the low-level planner, constructing two hierarchical controllers. One approach uses multi-agent reinforcement learning (MARL), and the other solves a linear-quadratic Nash game (LQNG) to produce control inputs. The controllers are compared against three baselines: an end-to-end MARL controller, a MARL controller tracking a fixed racing line, and an LQNG controller tracking a fixed racing line. Quantitative results show that the proposed hierarchical methods outperform their respective baseline methods in terms of head-to-head race wins and abiding by the rules. The hierarchical controller using MARL for low-level control consistently outperformed all other methods by winning over 88% of head-to-head races and more consistently adhered to the complex racing rules. Qualitatively, we observe the proposed controllers mimicking actions performed by expert human drivers such as shielding/blocking, overtaking, and long-term planning for delayed advantages. We show that hierarchical planning for game-theoretic reasoning produces competitive behavior even when challenged with complex rules and constraints.
translated by 谷歌翻译
对非线性不确定系统的控制是机器人技术领域的常见挑战。非线性潜在力模型结合了以高斯流程为特征的潜在不确定性,具有有效代表此类系统的希望,我们专注于这项工作的控制设计。为了实现设计,我们采用了高斯过程的状态空间表示来重塑非线性潜在力模型,从而建立了同时预测未来状态和不确定性的能力。使用此功能,制定了随机模型预测控制问题。为了得出问题的计算算法,我们使用基于方案的方法来制定随机优化的确定性近似。我们通过基于自动驾驶汽车的运动计划的仿真研究评估了最终方案的模型预测控制方法,该研究表现出很大的有效性。拟议的方法可以在其他各种机器人应用中找到前瞻性使用。
translated by 谷歌翻译
在本文中,我们为多机器人系统提供了一种分散和无通信的碰撞避免方法,该系统考虑了机器人定位和感测不确定性。该方法依赖于计算每个机器人的不确定感知安全区域,以在高斯分布的不确定性的假设下在环境中导航的其他机器人和环境中的静态障碍物。特别地,在每次步骤中,我们为每个机器人构建一个机器人约束的缓冲不确定性感知的voronoI细胞(B-UAVC)给出指定的碰撞概率阈值。通过将每个机器人的运动约束在其对应的B-UAVC内,即机器人和障碍物之间的碰撞概率仍然可以实现概率碰撞避免。所提出的方法是分散的,无通信,可扩展,具有机器人的数量和机器人本地化和感测不确定性的强大。我们将方法应用于单积分器,双积分器,差动驱动机器人和具有一般非线性动力学的机器人。对地面车辆,四轮车和异质机器人团队进行广泛的模拟和实验,以分析和验证所提出的方法。
translated by 谷歌翻译
在本文中,我们为自主机器人提供了一种新型的模型预测控制方法,受到任意形式的不确定性。拟议的风险感知模型预测路径积分(RA-MPPI)控制利用条件价值(CVAR)度量来为安全关键的机器人应用生成最佳控制动作。与大多数现有的随机MPC和CVAR优化方法不同,这些方法将原始动力学线性化并将控制任务制定为凸面程序,而拟议的方法直接使用原始动力学,而无需限制成本函数或噪声的形式。我们将新颖的RA-MPPI控制器应用于自动驾驶汽车,以在混乱的环境中进行积极的驾驶操作。我们的仿真和实验表明,与基线MPPI控制器相比,提出的RA-MPPI控制器可以达到大约相同的圈时间,而碰撞的碰撞明显少得多。所提出的控制器以高达80Hz的更新频率执行在线计算,利用现代图形处理单元(GPU)来进行多线程轨迹以及CVAR值的生成。
translated by 谷歌翻译
由于基本的非线性,混合和本质上不稳定的动力学,需要通过有限的接触力来稳定,因此为腿部机器人生成强大的轨迹仍然是一项具有挑战性的任务。此外,由于与环境和模型不匹配的未建模接触相互作用引起的干扰会阻碍计划轨迹的质量,从而导致不安全的运动。在这项工作中,我们建议使用随机轨迹优化来生成健壮的质心动量轨迹,以说明模型动力学和触点位置上的参数不确定性上的加法不确定性。通过强大的质心和全身轨迹优化之间的交替,我们生成了健壮的动量轨迹,同时与全身动力学保持一致。我们在四倍的机器人上执行了一组大量的模拟,这表明我们的随机轨迹优化问题减少了不同步态的脚部滑倒量,同时在确定性计划上实现了更好的性能。
translated by 谷歌翻译
延迟在迅速变化的环境中运行的自主系统的危害安全性,例如在自动驾驶和高速赛车方面的交通参与者的非确定性。不幸的是,在传统的控制器设计或在物理世界中部署之前,通常不考虑延迟。在本文中,从非线性优化到运动计划和控制以及执行器引起的其他不可避免的延迟的计算延迟被系统地和统一解决。为了处理所有这些延迟,在我们的框架中:1)我们提出了一种新的过滤方法,而没有事先了解动态和干扰分布的知识,以适应,安全地估算时间变化的计算延迟; 2)我们为转向延迟建模驱动动力学; 3)所有约束优化均在强大的管模型预测控制器中实现。对于应用的优点,我们证明我们的方法适合自动驾驶和自动赛车。我们的方法是独立延迟补偿控制器的新型设计。此外,在假设无延迟作为主要控制器的学习控制器的情况下,我们的方法是主要控制器的安全保护器。
translated by 谷歌翻译
在自主驾驶的背景下,已知迭代线性二次调节器(ILQR)是在运动计划问题中处理非线性车辆模型的有效方法。特别是,受约束的ILQR算法在不同类型的一般限制下实现运动计划任务方面表现出了值得注意的计算效率结果。但是,受约束的ILQR方法需要在使用对数屏障函数时在第一次迭代时作为先决条件进行可行的轨迹。同样,该方法为纳入快速,高效和有效的优化方法开辟了可能性,以进一步加快优化过程,从而可以成功地满足实时实施的要求。在本文中,定义明确的运动计划问题是在非线性车辆动力学和各种约束下提出的,并利用了乘数的交替方向方法来确定利用ILQR的最佳控制动作。该方法能够在第一次迭代时规避轨迹的可行性要求。然后研究了自动驾驶汽车运动计划的说明性示例。拟议的开发实现了高度计算效率的值得注意的成就。与基于对数屏障函数的约束ILQR算法进行比较,我们提出的方法在三种驾驶场景中,平均计算时间降低了31.93%,38.52%和44.57%;与优化求解器IPOPT相比,我们提出的方法将平均计算时间降低了46.02%,53.26%和88.43%。结果,可以通过我们提出的框架实现实时计算和实施,因此它为公路驾驶任务提供了额外的安全性。
translated by 谷歌翻译
现实世界加固学习(RL)问题通常要求代理通过遵守一套设计的约束来安全地安全。通过在模型预测控制(MPC)中,通过耦合具有连续动作的线性设置中的修改策略梯度框架来解决安全RL的挑战。指南通过将安全要求嵌入安全要求作为MPC配方中的机会限制来强制执行系统的安全操作。政策梯度培训步骤然后包括安全罚款,该安全罚款列举了基本政策能够安全行事。我们从理论上显示了这种惩罚允许在训练后删除安全指南,并用模拟器四轮机器使用实验说明我们的方法。
translated by 谷歌翻译