Federated learning (FL) on deep neural networks facilitates new applications at the edge, especially for wearable and Internet-of-Thing devices. Such devices capture a large and diverse amount of data, but they have memory, compute, power, and connectivity constraints which hinder their participation in FL. We propose Centaur, a multitier FL framework, enabling ultra-constrained devices to efficiently participate in FL on large neural nets. Centaur combines two major ideas: (i) a data selection scheme to choose a portion of samples that accelerates the learning, and (ii) a partition-based training algorithm that integrates both constrained and powerful devices owned by the same user. Evaluations, on four benchmark neural nets and three datasets, show that Centaur gains ~10% higher accuracy than local training on constrained devices with ~58% energy saving on average. Our experimental results also demonstrate the superior efficiency of Centaur when dealing with imbalanced data, client participation heterogeneity, and various network connection probabilities.
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
为了满足下一代无线通信网络的极其异构要求,研究界越来越依赖于使用机器学习解决方案进行实时决策和无线电资源管理。传统的机器学习采用完全集中的架构,其中整个培训数据在一个节点上收集,即云服务器,显着提高了通信开销,并提高了严重的隐私问题。迄今为止,最近提出了作为联合学习(FL)称为联合学习的分布式机器学习范式。在FL中,每个参与边缘设备通过使用自己的培训数据列举其本地模型。然后,通过无线信道,本地训练模型的权重或参数被发送到中央ps,聚合它们并更新全局模型。一方面,FL对优化无线通信网络的资源起着重要作用,另一方面,无线通信对于FL至关重要。因此,FL和无线通信之间存在“双向”关系。虽然FL是一个新兴的概念,但许多出版物已经在FL的领域发表了发布及其对下一代无线网络的应用。尽管如此,我们注意到没有任何作品突出了FL和无线通信之间的双向关系。因此,本调查纸的目的是通过提供关于FL和无线通信之间的相互依存性的及时和全面的讨论来弥合文学中的这种差距。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
联合学习(FL)作为边缘设备的有希望的技术,以协作学习共享预测模型,同时保持其训练数据,从而解耦了从需要存储云中的数据的机器学习的能力。然而,在规模和系统异质性方面,FL难以现实地实现。虽然有许多用于模拟FL算法的研究框架,但它们不支持在异构边缘设备上进行可扩展的流程。在本文中,我们呈现花 - 一种全面的FL框架,通过提供新的设施来执行大规模的FL实验并考虑丰富的异构流程来区分现有平台。我们的实验表明花卉可以仅使用一对高端GPU在客户尺寸下进行FL实验。然后,研究人员可以将实验无缝地迁移到真实设备中以检查设计空间的其他部分。我们认为花卉为社区提供了一个批判性的新工具,用于研究和发展。
translated by 谷歌翻译
联合学习(FL)可以对机器学习模型进行分布式培训,同时将个人数据保存在用户设备上。尽管我们目睹了FL在移动传感领域的越来越多的应用,例如人类活动识别(HAR),但在多设备环境(MDE)的背景下,尚未对FL进行研究,其中每个用户都拥有多个数据生产设备。随着移动设备和可穿戴设备的扩散,MDE在Ubicomp设置中越来越受欢迎,因此需要对其中的FL进行研究。 MDE中的FL的特征是在客户和设备异质性的存在中并不复杂,并不是独立的,并且在客户端之间并非独立分布(非IID)。此外,确保在MDE中有效利用佛罗里达州客户的系统资源仍然是一个重要的挑战。在本文中,我们提出了以用户为中心的FL培训方法来应对MDE中的统计和系统异质性,并在设备之间引起推理性能的一致性。火焰功能(i)以用户为中心的FL培训,利用同一用户的设备之间的时间对齐; (ii)准确性和效率感知设备的选择; (iii)对设备的个性化模型。我们还提出了具有现实的能量流量和网络带宽配置文件的FL评估测试,以及一种基于类的新型数据分配方案,以将现有HAR数据集扩展到联合设置。我们在三个多设备HAR数据集上的实验结果表明,火焰的表现优于各种基准,F1得分高4.3-25.8%,能源效率提高1.02-2.86倍,并高达2.06倍的收敛速度,以通过FL的公平分布来获得目标准确性工作量。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
高效联合学习是在边缘设备上培训和部署AI模型的关键挑战之一。然而,在联合学习中维护数据隐私提出了几种挑战,包括数据异质性,昂贵的通信成本和有限的资源。在本文中,我们通过(a)通过基于本地客户端的深度增强学习引入突出参数选择代理的上述问题,并在中央服务器上聚合所选择的突出参数,(b)分割正常的深度学习模型〜 (例如,CNNS)作为共享编码器和本地预测器,并通过联合学习训练共享编码器,同时通过本地自定义预测器将其知识传送到非IID客户端。所提出的方法(a)显着降低了联合学习的通信开销,并加速了模型推断,而方法(b)则在联合学习中解决数据异质性问题。此外,我们利用梯度控制机制来校正客户之间的梯度异质性。这使得训练过程更稳定并更快地收敛。实验表明,我们的方法产生了稳定的训练过程,并与最先进的方法相比实现了显着的结果。在培训VGG-11时,我们的方法明显降低了通信成本最高108 GB,并在培训Reset-20时需要7.6美元的通信开销,同时通过减少高达39.7 \%$ 39.7 \%$ vgg- 11.
translated by 谷歌翻译
联合学习(FL)可以使用学习者使用本地数据进行分布式培训,从而增强隐私和减少沟通。但是,它呈现出与数据分布,设备功能和参与者可用性的异质性有关的众多挑战,作为部署量表,这可能会影响模型融合和偏置。现有的FL方案使用随机参与者选择来提高公平性;然而,这可能导致资源低效和更低的质量培训。在这项工作中,我们系统地解决了FL中的资源效率问题,展示了智能参与者选择的好处,并将更新从争吵的参与者纳入。我们展示了这些因素如何实现资源效率,同时还提高了训练有素的模型质量。
translated by 谷歌翻译
In recent years, deep learning (DL) models have demonstrated remarkable achievements on non-trivial tasks such as speech recognition and natural language understanding. One of the significant contributors to its success is the proliferation of end devices that acted as a catalyst to provide data for data-hungry DL models. However, computing DL training and inference is the main challenge. Usually, central cloud servers are used for the computation, but it opens up other significant challenges, such as high latency, increased communication costs, and privacy concerns. To mitigate these drawbacks, considerable efforts have been made to push the processing of DL models to edge servers. Moreover, the confluence point of DL and edge has given rise to edge intelligence (EI). This survey paper focuses primarily on the fifth level of EI, called all in-edge level, where DL training and inference (deployment) are performed solely by edge servers. All in-edge is suitable when the end devices have low computing resources, e.g., Internet-of-Things, and other requirements such as latency and communication cost are important in mission-critical applications, e.g., health care. Firstly, this paper presents all in-edge computing architectures, including centralized, decentralized, and distributed. Secondly, this paper presents enabling technologies, such as model parallelism and split learning, which facilitate DL training and deployment at edge servers. Thirdly, model adaptation techniques based on model compression and conditional computation are described because the standard cloud-based DL deployment cannot be directly applied to all in-edge due to its limited computational resources. Fourthly, this paper discusses eleven key performance metrics to evaluate the performance of DL at all in-edge efficiently. Finally, several open research challenges in the area of all in-edge are presented.
translated by 谷歌翻译
尽管结果令人印象深刻,但深度学习的技术还引起了经常在数据中心进行的培训程序引起的严重隐私和环境问题。作为回应,已经出现了集中培训的替代方案,例如联邦学习(FL)。也许出乎意料的是,FL开始在全球范围内部署,这些公司必须遵守源自倡导隐私保护的政府和社会团体的新法律要求和政策。 \ textit {但是,与FL有关的潜在环境影响仍然不清楚和未开发。本文提供了有关佛罗里达碳足迹的首次系统研究。然后,我们将FL的碳足迹与传统的集中学习进行了比较。我们的发现表明,根据配置,FL可以比集中的机器学习高达两个数量级。但是,在某些情况下,由于嵌入式设备的能源消耗减少,它可以与集中学习相提并论。我们使用FL进行了不同类型的数据集,设置和各种深度学习模型的广泛实验。最后,我们强调并将报告的结果与FL的未来挑战和趋势联系起来,以减少其环境影响,包括算法效率,硬件能力和更强的行业透明度。
translated by 谷歌翻译
Unmanned aerial vehicle (UAV) swarms are considered as a promising technique for next-generation communication networks due to their flexibility, mobility, low cost, and the ability to collaboratively and autonomously provide services. Distributed learning (DL) enables UAV swarms to intelligently provide communication services, multi-directional remote surveillance, and target tracking. In this survey, we first introduce several popular DL algorithms such as federated learning (FL), multi-agent Reinforcement Learning (MARL), distributed inference, and split learning, and present a comprehensive overview of their applications for UAV swarms, such as trajectory design, power control, wireless resource allocation, user assignment, perception, and satellite communications. Then, we present several state-of-the-art applications of UAV swarms in wireless communication systems, such us reconfigurable intelligent surface (RIS), virtual reality (VR), semantic communications, and discuss the problems and challenges that DL-enabled UAV swarms can solve in these applications. Finally, we describe open problems of using DL in UAV swarms and future research directions of DL enabled UAV swarms. In summary, this survey provides a comprehensive survey of various DL applications for UAV swarms in extensive scenarios.
translated by 谷歌翻译
联邦学习(FL)最近由于其在保留隐私而使用分散数据的能力,最近引起了人们的关注。但是,这也提出了与参与设备的异质性有关的其他挑战,无论是在其计算能力和贡献数据方面。同时,神经体系结构搜索(NAS)已成功用于集中式数据集,从而产生了最新的结果,从而获得了受限(硬件意识)和不受约束的设置。但是,即使是在NAS和FL的交集的最新工作,也假定了与数据中心硬件的均匀计算环境,并且无法解决使用受约束,异质设备的问题。结果,在联合环境中对NAS的实际用法仍然是我们在工作中解决的一个空旷的问题。我们设计我们的系统Fedoras,在处理具有非IID分布数据的不同功能的设备时发现和培训有希望的体系结构,并提供了其在不同环境中有效性的经验证据。具体而言,我们在跨越三种不同模式(视觉,语音,文本)的数据集中评估了Fedoras,并且与最先进的联合解决方案相比,其性能更好,同时保持资源效率。
translated by 谷歌翻译
通信技术和互联网的最新进展与人工智能(AI)启用了智能医疗保健。传统上,由于现代医疗保健网络的高性性和日益增长的数据隐私问题,AI技术需要集中式数据收集和处理,这可能在现实的医疗环境中可能是不可行的。作为一个新兴的分布式协作AI范例,通过协调多个客户(例如,医院)来执行AI培训而不共享原始数据,对智能医疗保健特别有吸引力。因此,我们对智能医疗保健的使用提供了全面的调查。首先,我们在智能医疗保健中展示了近期进程,动机和使用FL的要求。然后讨论了近期智能医疗保健的FL设计,从资源感知FL,安全和隐私感知到激励FL和个性化FL。随后,我们对关键医疗领域的FL新兴应用提供了最先进的综述,包括健康数据管理,远程健康监测,医学成像和Covid-19检测。分析了几个最近基于智能医疗保健项目,并突出了从调查中学到的关键经验教训。最后,我们讨论了智能医疗保健未来研究的有趣研究挑战和可能的指示。
translated by 谷歌翻译
联邦学习(FL)一直在不同的ML任务中获得显着的牵引力,从视野到键盘预测。在大规模的部署中,客户异质性是一个事实,并构成公平,培训性能和准确性的主要问题。虽然已经进行了统计数据异质性的重大努力,但是作为系统异质性称为客户端的处理能力和网络带宽的多样性仍然很大程度上是未开发的。当前解决方案无论是忽略大部分可用的设备,也无限制地设定均匀限制,由最低能力的参与者限制。在这项工作中,我们介绍了有序的辍学,这是一种机制,实现了深度神经网络(DNN)中的有序,嵌套的知识表示,并且能够在不需要再培训的情况下提取较低的脚印子模型。我们进一步表明,对于线性地图,我们的订购辍学等同于SVD。我们采用这种技术,以及一种自蒸馏方法,在一个叫做峡湾的框架中。 Fjord通过将模型宽度定制到客户端的功能来减轻客户体系异质性的问题。在各种方式上对CNN和RNN的广泛评估表明,峡湾始终如一地导致最先进的基线的显着性能,同时保持其嵌套结构。
translated by 谷歌翻译
A fundamental challenge to providing edge-AI services is the need for a machine learning (ML) model that achieves personalization (i.e., to individual clients) and generalization (i.e., to unseen data) properties concurrently. Existing techniques in federated learning (FL) have encountered a steep tradeoff between these objectives and impose large computational requirements on edge devices during training and inference. In this paper, we propose SplitGP, a new split learning solution that can simultaneously capture generalization and personalization capabilities for efficient inference across resource-constrained clients (e.g., mobile/IoT devices). Our key idea is to split the full ML model into client-side and server-side components, and impose different roles to them: the client-side model is trained to have strong personalization capability optimized to each client's main task, while the server-side model is trained to have strong generalization capability for handling all clients' out-of-distribution tasks. We analytically characterize the convergence behavior of SplitGP, revealing that all client models approach stationary points asymptotically. Further, we analyze the inference time in SplitGP and provide bounds for determining model split ratios. Experimental results show that SplitGP outperforms existing baselines by wide margins in inference time and test accuracy for varying amounts of out-of-distribution samples.
translated by 谷歌翻译
随着物联网,AI和ML/DL算法的出现,数据驱动的医疗应用已成为一种有前途的工具,用于从医学数据设计可靠且可扩展的诊断和预后模型。近年来,这引起了从学术界到工业的广泛关注。这无疑改善了医疗保健提供的质量。但是,由于这些基于AI的医疗应用程序在满足严格的安全性,隐私和服务标准(例如低延迟)方面的困难,因此仍然采用较差。此外,医疗数据通常是分散的和私人的,这使得在人群之间产生强大的结果具有挑战性。联邦学习(FL)的最新发展使得以分布式方式训练复杂的机器学习模型成为可能。因此,FL已成为一个积极的研究领域,尤其是以分散的方式处理网络边缘的医疗数据,以保护隐私和安全问题。为此,本次调查论文重点介绍了数据共享是重大负担的医疗应用中FL技术的当前和未来。它还审查并讨论了当前的研究趋势及其设计可靠和可扩展模型的结果。我们概述了FL将军的统计问题,设备挑战,安全性,隐私问题及其在医疗领域的潜力。此外,我们的研究还集中在医疗应用上,我们重点介绍了全球癌症的负担以及有效利用FL来开发计算机辅助诊断工具来解决这些诊断工具。我们希望这篇评论是一个检查站,以彻底的方式阐明现有的最新最新作品,并为该领域提供开放的问题和未来的研究指示。
translated by 谷歌翻译
This paper deals with the problem of statistical and system heterogeneity in a cross-silo Federated Learning (FL) framework where there exist a limited number of Consumer Internet of Things (CIoT) devices in a smart building. We propose a novel Graph Signal Processing (GSP)-inspired aggregation rule based on graph filtering dubbed ``G-Fedfilt''. The proposed aggregator enables a structured flow of information based on the graph's topology. This behavior allows capturing the interconnection of CIoT devices and training domain-specific models. The embedded graph filter is equipped with a tunable parameter which enables a continuous trade-off between domain-agnostic and domain-specific FL. In the case of domain-agnostic, it forces G-Fedfilt to act similar to the conventional Federated Averaging (FedAvg) aggregation rule. The proposed G-Fedfilt also enables an intrinsic smooth clustering based on the graph connectivity without explicitly specified which further boosts the personalization of the models in the framework. In addition, the proposed scheme enjoys a communication-efficient time-scheduling to alleviate the system heterogeneity. This is accomplished by adaptively adjusting the amount of training data samples and sparsity of the models' gradients to reduce communication desynchronization and latency. Simulation results show that the proposed G-Fedfilt achieves up to $3.99\% $ better classification accuracy than the conventional FedAvg when concerning model personalization on the statistically heterogeneous local datasets, while it is capable of yielding up to $2.41\%$ higher accuracy than FedAvg in the case of testing the generalization of the models.
translated by 谷歌翻译
联合学习(FL)是AI的新出现的分支,它有助于边缘设备进行协作训练全球机器学习模型,而无需集中数据并默认使用隐私。但是,尽管进步显着,但这种范式面临着各种挑战。具体而言,在大规模部署中,客户异质性是影响培训质量(例如准确性,公平性和时间)的规范。此外,这些电池约束设备的能源消耗在很大程度上尚未探索,这是FL的广泛采用的限制。为了解决这个问题,我们开发了EAFL,这是一种能源感知的FL选择方法,该方法考虑了能源消耗以最大程度地提高异质目标设备的参与。 \ Scheme是一种功能感知的培训算法,该算法与电池电量更高的挑选客户结合使用,并具有最大化系统效率的能力。我们的设计共同最大程度地减少了临界时间,并最大程度地提高了其余的电池电池水平。 \方案将测试模型的精度提高了高达85 \%,并将客户的辍学率降低了2.45 $ \ times $。
translated by 谷歌翻译