结构方程式模型(SEM)可能是用于建模因果关系的最常用的框架。然而,正如我们所示,天真地将该框架延伸到无限的多个变量,例如,要为模型动态系统而导入几个问题。我们介绍GSEMS(广义SEM),灵活的SEM直接指定干预结果,其中(1)微分方程的系统可以以自然和直观的方式表示,(2)某些自然情况,不能由SEM表示,可以轻松表示,(3)SEM中实际因果关系的定义基本上没有变化。
translated by 谷歌翻译
广义结构方程模型(GSEM)[Peters和Halpern 2021],作为名称表明,结构方程模型(SEM)的概括。他们可以在不同的许多变量中处理(以及其他物种,这对于捕获动态系统至关重要。我们在GSEM中提供了一种声音和完整的Aximatizing,即哈珀[2000]为SEM提供的声音和完整的公理化的延伸。考虑到GSEM有助于澄清Halpern的公理捕获的属性。
translated by 谷歌翻译
本文迈出了从实验中学习的逻辑的第一步。为此,我们调查了建模因果和(定性)认知推理的相互作用的正式框架。对于我们的方法至关重要是一种干预概念的想法,可以用作(真实或假设的)实验的正式表达。在第一步中,我们将众所周知的因果模型与代理人的认知状态的简单HITIKKA样式表示。在生成的设置中,不仅可以对关于变量值的知识以及干预措施如何影响它们,而且可以对其进行交谈,而且还可以谈论知识更新。由此产生的逻辑可以模拟关于思想实验的推理。但是,它无法解释从实验中学习,这显然是由它验证干预措施没有学习原则的事实。因此,在第二步中,我们实现更复杂的知识概念,该知识概念允许代理在进行实验时观察(测量)某些变量。该扩展系统确实允许从实验中学习。对于所有提出的逻辑系统,我们提供了一种声音和完整的公理化。
translated by 谷歌翻译
动态系统广泛用于科学和工程,以模拟由多个交互组件组成的系统。通常,它们可以在意义上给出因果解释,因为它们不仅模拟了系统组件状态随时间的演变,而且描述了他们的进化如何受到动态的系统的外部干预的影响。我们介绍了结构动态因果模型(SDCMS)的正式框架,其将系统组件的因果语言作为模型的一部分来阐述。 SDCMS表示动态系统作为随机过程的集合,并指定了管理每个组件的动态的基本因果机制,作为任意顺序的随机微分方程的结构化系统。 SDCMS扩展了结构因果模型(SCM)的多功能因果建模框架,也称为结构方程模型(SEM),通过显式允许时间依赖。 SDCM可以被认为是SCM的随机过程版本,其中SCM的静态随机变量由动态随机过程及其衍生物代替。我们为SDCMS理论提供基础,(i)正式定义SDCMS,其解决方案,随机干预和图形表示; (ii)对初始条件的解决方案的存在性和独特性; (iii)随着时间的推移倾向于无穷大,讨论SDCMS平衡的条件下降; (iv)将SDCM的性质与平衡SCM的性质相关联。这封对应关系使人们能够在研究大类随机动力系统的因果语义时利用SCM的大量统计工具和发现方法。该理论用来自不同科学域的几个众所周知的示例进行说明。
translated by 谷歌翻译
也称为(非参数)结构方程模型(SEMS)的结构因果模型(SCM)被广泛用于因果建模目的。特别是,也称为递归SEM的无循环SCMS,形成了一个研究的SCM的良好的子类,概括了因果贝叶斯网络来允许潜在混淆。在本文中,我们调查了更多普通环境中的SCM,允许存在潜在混杂器和周期。我们展示在存在周期中,无循环SCM的许多方便的性质通常不会持有:它们并不总是有解决方案;它们并不总是诱导独特的观察,介入和反事实分布;边缘化并不总是存在,如果存在边缘模型并不总是尊重潜在的投影;他们并不总是满足马尔可夫财产;他们的图表并不总是与他们的因果语义一致。我们证明,对于SCM一般,这些属性中的每一个都在某些可加工条件下保持。我们的工作概括了SCM的结果,迄今为止仅针对某些特殊情况所知的周期。我们介绍了将循环循环设置扩展到循环设置的简单SCM的类,同时保留了许多方便的无环SCM的性能。用本文,我们的目标是为SCM提供统计因果建模的一般理论的基础。
translated by 谷歌翻译
我们概述了在其知识表示和声明问题解决的应用中的视角下的时间逻辑编程。这些程序是将通常规则与时间模态运算符组合的结果,如线性时间时间逻辑(LTL)。我们专注于最近的非单调形式主义的结果​​称为时间平衡逻辑(电话),该逻辑(电话)为LTL的全语法定义,但是基于平衡逻辑执行模型选择标准,答案集编程的众所周知的逻辑表征(ASP )。我们获得了稳定模型语义的适当延伸,以进行任意时间公式的一般情况。我们记得电话和单调基础的基本定义,这里的时间逻辑 - 和那里(THT),并研究无限和有限迹线之间的差异。我们还提供其他有用的结果,例如将转换成其他形式主义,如量化的平衡逻辑或二阶LTL,以及用于基于自动机计算的时间稳定模型的一些技术。在第二部分中,我们专注于实际方面,定义称为较近ASP的时间逻辑程序的句法片段,并解释如何在求解器Telingo的构建中被利用。
translated by 谷歌翻译
形状约束语言(SHACL)是通过验证图表上的某些形状来验证RDF数据的最新W3C推荐语言。先前的工作主要集中在验证问题上,并且仅针对SHACL的简化版本研究了对设计和优化目的至关重要的可满足性和遏制的标准决策问题。此外,SHACL规范不能定义递归定义的约束的语义,这导致文献中提出了几种替代性递归语义。尚未研究这些不同语义与重要决策问题之间的相互作用。在本文中,我们通过向新的一阶语言(称为SCL)的翻译提供了对SHACL的不同特征的全面研究,该语言精确地捕获了SHACL的语义。我们还提出了MSCL,这是SCL的二阶扩展,它使我们能够在单个形式的逻辑框架中定义SHACL的主要递归语义。在这种语言中,我们还提供了对过滤器约束的有效处理,这些滤镜经常在相关文献中被忽略。使用此逻辑,我们为不同的SHACL片段的可满足性和遏制决策问题提供了(联合)可决定性和复杂性结果的详细图。值得注意的是,我们证明这两个问题对于完整的语言都是不可避免的,但是即使面对递归,我们也提供了有趣的功能的可决定性组合。
translated by 谷歌翻译
最近已经提出了几个查询和分数来解释对ML模型的个人预测。鉴于ML型号的灵活,可靠和易于应用的可解释性方法,我们预见了需要开发声明语言以自然地指定不同的解释性查询。我们以原则的方式通过源于逻辑,称为箔,允许表达许多简单但重要的解释性查询,并且可以作为更具表现力解释性语言的核心来实现这一语言。我们研究箔片查询的两类ML模型的计算复杂性经常被视为容易解释:决策树和OBDD。由于ML模型的可能输入的数量是尺寸的指数,因此箔评估问题的易易性是精细的,但是可以通过限制模型的结构或正在评估的箔片段来实现。我们还以高级声明语言包装的箔片的原型实施,并执行实验,表明可以在实践中使用这种语言。
translated by 谷歌翻译
This review presents empirical researchers with recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
translated by 谷歌翻译
我们提出了普遍因果关系,这是一个基于类别理论的总体框架,该框架定义了基于因果推理的普遍特性,该属性独立于所使用的基本代表性形式主义。更正式的是,普遍的因果模型被定义为由对象和形态组成的类别,它们代表因果影响,以及进行干预措施(实验)和评估其结果(观察)的结构。函子在类别之间的映射和自然变换映射在相同两个类别的一对函子之间。我们框架中的抽象因果图是使用类别理论的通用构造构建的,包括抽象因果图的限制或共限制,或更普遍的KAN扩展。我们提出了普遍因果推断的两个基本结果。第一个结果称为普遍因果定理(UCT),与图的通用性有关,这些结果被视为函数映射对象和关系从抽象因果图的索引类别到一个实际因果模型,其节点由随机变量标记为实际因果模型和边缘代表功能或概率关系。 UCT指出,任何因果推论都可以以规范的方式表示为代表对象的抽象因果图的共同限制。 UCT取决于滑轮理论的基本结果。第二个结果是因果繁殖特性(CRP),指出对象x对另一个对象y的任何因果影响都可以表示为两个抽象因果图之间的自然转化。 CRP来自Yoneda引理,这是类别理论中最深层的结果之一。 CRP属性类似于复制元素希尔伯特空间中的繁殖属性,该元素是机器学习中内核方法的基础。
translated by 谷歌翻译
我们提出了答案设置的程序,该程序指定和计算在分类模型上输入的实体的反事实干预。关于模型的结果,生成的反事实作为定义和计算分类所在实体的特征值的基于因果的解释分数的基础,即“责任分数”。方法和程序可以应用于黑盒式模型,也可以使用可以指定为逻辑程序的模型,例如基于规则的分类器。这项工作的主要重点是“最佳”反事实体的规范和计算,即导致最大责任分数的人。从它们中可以从原始实体中读取解释作为最大责任特征值。我们还扩展程序以引入图片语义或域知识。我们展示如何通过概率方法扩展方法,以及如何通过使用约束来修改潜在的概率分布。示出了在DLV ASP-Solver的语法中写入的若干程序,并与其运行。
translated by 谷歌翻译
动态系统中的完美适应性是一个或多个变量具有对外部刺激的持续变化的初始短暂响应的现象,但随着系统收敛到平衡,其原始值还原为原始值。借助因果有序算法,可以构建代表变量之间的因果关系和平衡分布中条件独立性之间的因果关系的图形表示。我们应用这些工具来制定足够的图形条件,以识别一组一阶微分方程的完美适应。此外,我们提供了足够的条件来测试实验平衡数据中完美适应的情况。我们将此方法应用于蛋白质信号通路的简单模型,并在模拟和使用现实世界中的蛋白质表达数据中测试其预测。我们证明,完美的适应会导致因果发现算法输出中边缘的误导方向。
translated by 谷歌翻译
每个已知的人工深神经网络(DNN)都对应于规范Grothendieck的拓扑中的一个物体。它的学习动态对应于此拓扑中的形态流动。层中的不变结构(例如CNNS或LSTMS)对应于Giraud的堆栈。这种不变性应该是对概括属性的原因,即从约束下的学习数据中推断出来。纤维代表语义前类别(Culioli,Thom),在该类别上定义了人工语言,内部逻辑,直觉主义者,古典或线性(Girard)。网络的语义功能是其能够用这种语言表达理论的能力,以回答输出数据中有关输出的问题。语义信息的数量和空间是通过类比与2015年香农和D.Bennequin的Shannon熵的同源解释来定义的。他们概括了Carnap和Bar-Hillel(1952)发现的措施。令人惊讶的是,上述语义结构通过封闭模型类别的几何纤维对象进行了分类,然后它们产生了DNNS及其语义功能的同位不变。故意类型的理论(Martin-Loef)组织了这些物体和它们之间的纤维。 Grothendieck的导数分析了信息内容和交流。
translated by 谷歌翻译
This work shows how to leverage causal inference to understand the behavior of complex learning systems interacting with their environment and predict the consequences of changes to the system. Such predictions allow both humans and algorithms to select the changes that would have improved the system performance. This work is illustrated by experiments on the ad placement system associated with the Bing search engine.
translated by 谷歌翻译
在过去几年的几十年中,致力于更新稳定模型语义(AKA答案设置程序)下更新逻辑计划的问题,或者换句话说,表现出培养结果的问题 - 当它描述更改时,遵守逻辑程序。而最先进的方法是在古典逻辑背景下的相同基本的直觉和愿望被指导,他们基于根本不同的原则和方法,这阻止了可以拥抱两个信念的统一框架规则更新。在本文中,我们将概述与答案设置的编程更新相关的一些主要方法和结果,同时指出本主题研究的一些主要挑战。
translated by 谷歌翻译
有良好的因果建模框架,但是这些框架需要许多人类领域的专业知识来定义因果变量并执行干预措施。为了使自主代理通过互动经验学习抽象的因果模型,需要扩展和澄清现有的理论基础。现有框架没有关于可变选择 /表示形式的指导,更重要的是,没有迹象表明国家空间的行为政策或物理转换不得将其视为干预措施。本文中概述的框架将动作描述为状态空间的转换,例如由运行策略的代理引起的。这使得以统一的方式描述了微型状态空间的转换及其抽象模型,并说后者何时是垂直 /接地 /自然的。然后,我们介绍(因果)变量,将机制定义为不变的预测因子,并说何时可以将动作视为``手术干预'',从而将因果关系和干预技能学习的目标带入了更清晰的焦点。
translated by 谷歌翻译
连续约束满意度问题(CCSP)是一个约束满意度问题(CSP),其间隔域$ u \ subset \ mathbb {r} $。我们进行了一项系统的研究,以对CCSP进行分类,这些CCSP已完成现实的存在理论,即ER完整。为了定义该类别,我们首先考虑ETR问题,该问题也代表了真实的存在理论。在此问题的情况下,我们给出了$ \ compant x_1,\ ldots,x_n \ in \ mathbb {r}的某个句子:\ phi(x_1,\ ldots,x_n)$,其中$ \ phi $ is由符号$ \ {0、1, +,\ cdot,\ geq,>,\ wedge,\ vee,\ neg \} $组成的符号符号的公式正确。 。现在,ER是所有问题的家族,这些家族允许多项式时间降低到ETR。众所周知,np $ \ subseteq $ er $ \ subseteq $ pspace。我们将注意力限制在CCSP上,并具有附加限制($ x + y = z $)和其他一些轻度的技术状况。以前,已经显示出乘法约束($ x \ cdot y = z $),平方约束($ x^2 = y $)或反转约束($ x \ cdot y = 1 $)足以建立ER-完整性。如下所示,我们以最大的平等约束来扩展这一点。我们表明,CCSP(具有附加限制和其他轻度技术状况)具有任何一个表现良好的弯曲平等约束($ f(x,y)= 0 $)的CCSP是ER的曲线限制($ F(x,y)= 0 $)。我们将结果进一步扩展到不平等约束。我们表明,任何行为良好的凸出弯曲且行为良好的凹陷弯曲的不平等约束($ f(x,y)\ geq 0 $ and $ g(x,x,y)\ geq 0 $)暗示着班级的ER完整性这种CCSP。
translated by 谷歌翻译
We propose a layered hierarchical architecture called UCLA (Universal Causality Layered Architecture), which combines multiple levels of categorical abstraction for causal inference. At the top-most level, causal interventions are modeled combinatorially using a simplicial category of ordinal numbers. At the second layer, causal models are defined by a graph-type category. The non-random ``surgical" operations on causal structures, such as edge deletion, are captured using degeneracy and face operators from the simplicial layer above. The third categorical abstraction layer corresponds to the data layer in causal inference. The fourth homotopy layer comprises of additional structure imposed on the instance layer above, such as a topological space, which enables evaluating causal models on datasets. Functors map between every pair of layers in UCLA. Each functor between layers is characterized by a universal arrow, which defines an isomorphism between every pair of categorical layers. These universal arrows define universal elements and representations through the Yoneda Lemma, and in turn lead to a new category of elements based on a construction introduced by Grothendieck. Causal inference between each pair of layers is defined as a lifting problem, a commutative diagram whose objects are categories, and whose morphisms are functors that are characterized as different types of fibrations. We illustrate the UCLA architecture using a range of examples, including integer-valued multisets that represent a non-graphical framework for conditional independence, and causal models based on graphs and string diagrams using symmetric monoidal categories. We define causal effect in terms of the homotopy colimit of the nerve of the category of elements.
translated by 谷歌翻译
药物的因果模型已用于分析机器学习系统的安全性方面。但是,识别代理是非平凡的 - 通常只是由建模者假设而没有太多理由来实现因果模型 - 建模失败可能会导致安全分析中的错误。本文提出了对代理商的第一个正式因果定义 - 大约是代理人是制度,如果他们的行为以不同的方式影响世界,则可以改善其政策。由此,我们得出了第一个用于从经验数据中发现代理的因果发现算法,并提供了用于在因果模型和游戏理论影响图之间转换的算法。我们通过解决不正确的因果模型引起的一些混乱来证明我们的方法。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译