针对变压器的神经体系结构搜索(NAS)已用于创建针对某些延迟约束的最新模型。在这项工作中,我们提出了更大,更快的速度,这是一种新颖的量化参数共享NAS,它为8位整数(INT8)量化变压器的架构。我们的结果表明,我们的方法能够产生胜过当前最新技术的BERT模型,即Autotinybert,我们测试了所有潜伏期目标,达到了2.68%的准确性增益。此外,尽管我们技术发现的模型的参数数量比float32的参数数量更大,但由于其参数为INT8,但它们的内存足迹大大较小。
translated by 谷歌翻译
AD相关建模在包括Microsoft Bing在内的在线广告系统中起着至关重要的作用。为了利用强大的变压器在这种低延迟设置中,许多现有方法脱机执行广告端计算。虽然有效,但这些方法无法提供冷启动广告,从而导致对此类广告的相关性预测不佳。这项工作旨在通过结构化修剪设计一种新的低延迟BERT,以在CPU平台上授权实时在线推断对Cold Start Ads相关性。我们的挑战是,以前的方法通常将变压器的所有层都缩减为高,均匀的稀疏性,从而产生无法以可接受的精度实现令人满意的推理速度的模型。在本文中,我们提出了SwiftPruner - 一个有效的框架,利用基于进化的搜索自动在所需的延迟约束下自动找到表现最佳的稀疏BERT模型。与进行随机突变的现有进化算法不同,我们提出了一个具有潜伏意见的多目标奖励的增强突变器,以进行更好的突变,以有效地搜索层稀疏模型的大空间。广泛的实验表明,与均匀的稀疏基线和最先进的搜索方法相比,我们的方法始终达到更高的ROC AUC和更低的潜伏度。值得注意的是,根据我们在1900年的延迟需求,SwiftPruner的AUC比Bert-Mini在大型现实世界数据集中的最先进的稀疏基线高0.86%。在线A/B测试表明,我们的模型还达到了有缺陷的冷启动广告的比例,并获得了令人满意的实时服务延迟。
translated by 谷歌翻译
我们介绍了延迟感知网络加速度(LANA) - 一种在神经结构上建立的方法,用于加速神经网络的神经结构搜索技术和教师学生蒸馏。 Lana由两个阶段组成:在第一阶段,它会使用层面特征映射蒸馏来列举每层教师网络的许多替代操作。在第二阶段,它解决了使用新颖的整数线性优化(ILP)方法的有效操作的组合选择。 ILP带来独特的属性,因为它(i)在几秒钟内执行NAS,(ii)轻松满足预算约束,(iii)在图层粒度上工作,(iv)支持巨大的搜索空间$ o(10 ^ { 100})$,超越先前的搜索方法,效率和效率。在广泛的实验中,我们表明Lana产生了由目标潜伏期预算限制的有效和准确的模型,同时比其他技术明显快。我们分析了三个流行的网络架构:高效的网络,高效网络和reses,并在压缩较大模型的较小模型的延迟级别时,实现所有型号(高达3.0 \%$)的准确性改进。 Lana通过GPU和CPU实现显着的加速(高达5美元\倍),以没有准确性下降。代码将很快分享。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
近年来,大型预训练的变压器网络已显示出许多自然语言理解任务的巨大改进。但是,由于延迟和成本限制,这些模型的巨大规模给他们的微调和在线部署带来了重大挑战。支持N:M半结构化的稀疏性和低精油整数计算的新硬件是提高DNN模型效率的有前途解决方案。但是,很少有研究系统地研究预先训练的变压器网络在多大程度上受益于这些技术的组合,以及如何最好地压缩变压器的每个组件。我们提出了一个灵活的压缩框架NXMiformer,该框架使用ADMM和基于Ste的QAT执行同时进行稀疏和量化。此外,我们介绍且廉价的启发式驱动搜索算法,该算法标识了满足压缩比约束的有希望的异质压缩配置。当通过NLU基准测试的胶水套件进行评估时,我们的方法可以达到BERT模型编码器的93%压缩,同时保留了98.2%的原始模型准确性并充分利用硬件功能。异质配置通过搜索启发式发现了基线准确性的99.5%,同时仍将模型压缩为87.5%。
translated by 谷歌翻译
深神经网络(DNNS)在各种机器学习(ML)应用程序中取得了巨大成功,在计算机视觉,自然语言处理和虚拟现实等中提供了高质量的推理解决方案。但是,基于DNN的ML应用程序也带来计算和存储要求的增加了很多,对于具有有限的计算/存储资源,紧张的功率预算和较小形式的嵌入式系统而言,这尤其具有挑战性。挑战还来自各种特定应用的要求,包括实时响应,高通量性能和可靠的推理准确性。为了应对这些挑战,我们介绍了一系列有效的设计方法,包括有效的ML模型设计,定制的硬件加速器设计以及硬件/软件共同设计策略,以启用嵌入式系统上有效的ML应用程序。
translated by 谷歌翻译
混合精确的深神经网络达到了硬件部署所需的能源效率和吞吐量,尤其是在资源有限的情况下,而无需牺牲准确性。但是,不容易找到保留精度的最佳每层钻头精度,尤其是在创建巨大搜索空间的大量模型,数据集和量化技术中。为了解决这一困难,最近出现了一系列文献,并且已经提出了一些实现有希望的准确性结果的框架。在本文中,我们首先总结了文献中通常使用的量化技术。然后,我们对混合精液框架进行了彻底的调查,该调查是根据其优化技术进行分类的,例如增强学习和量化技术,例如确定性舍入。此外,讨论了每个框架的优势和缺点,我们在其中呈现并列。我们最终为未来的混合精液框架提供了指南。
translated by 谷歌翻译
卷积神经网络(CNNS)用于许多现实世界应用,例如基于视觉的自主驾驶和视频内容分析。要在各种目标设备上运行CNN推断,硬件感知神经结构搜索(NAS)至关重要。有效的硬件感知NAS的关键要求是对推理延迟的快速评估,以便对不同的架构进行排名。在构建每个目标设备的延迟预测器的同时,在本领域中通常使用,这是一个非常耗时的过程,在极定的设备存在下缺乏可扩展性。在这项工作中,我们通过利用延迟单调性来解决可扩展性挑战 - 不同设备上的架构延迟排名通常相关。当存在强烈的延迟单调性时,我们可以重复使用在新目标设备上搜索一个代理设备的架构,而不会丢失最佳状态。在没有强烈的延迟单调性的情况下,我们提出了一种有效的代理适应技术,以显着提高延迟单调性。最后,我们验证了我们的方法,并在多个主流搜索空间上使用不同平台的设备进行实验,包括MobileNet-V2,MobileNet-V3,NAS-Bench-201,Proxylessnas和FBNet。我们的结果突出显示,通过仅使用一个代理设备,我们可以找到几乎与现有的每个设备NAS相同的帕累托最优架构,同时避免为每个设备构建延迟预测器的禁止成本。 github:https://github.com/ren-research/oneproxy.
translated by 谷歌翻译
We revisit the one-shot Neural Architecture Search (NAS) paradigm and analyze its advantages over existing NAS approaches. Existing one-shot method, however, is hard to train and not yet effective on large scale datasets like ImageNet. This work propose a Single Path One-Shot model to address the challenge in the training. Our central idea is to construct a simplified supernet, where all architectures are single paths so that weight co-adaption problem is alleviated. Training is performed by uniform path sampling. All architectures (and their weights) are trained fully and equally. Comprehensive experiments verify that our approach is flexible and effective. It is easy to train and fast to search. It effortlessly supports complex search spaces (e.g., building blocks, channel, mixed-precision quantization) and different search constraints (e.g., FLOPs, latency). It is thus convenient to use for various needs. It achieves start-of-the-art performance on the large dataset ImageNet.Equal contribution. This work is done when Haoyuan Mu and Zechun Liu are interns at MEGVII Technology.
translated by 谷歌翻译
Limited computational budgets often prevent transformers from being used in production and from having their high accuracy utilized. A knowledge distillation approach addresses the computational efficiency by self-distilling BERT into a smaller transformer representation having fewer layers and smaller internal embedding. However, the performance of these models drops as we reduce the number of layers, notably in advanced NLP tasks such as span question answering. In addition, a separate model must be trained for each inference scenario with its distinct computational budget. Dynamic-TinyBERT tackles both limitations by partially implementing the Length Adaptive Transformer (LAT) technique onto TinyBERT, achieving x3 speedup over BERT-base with minimal accuracy loss. In this work, we expand the Dynamic-TinyBERT approach to generate a much more highly efficient model. We use MiniLM distillation jointly with the LAT method, and we further enhance the efficiency by applying low-bit quantization. Our quantized length-adaptive MiniLM model (QuaLA-MiniLM) is trained only once, dynamically fits any inference scenario, and achieves an accuracy-efficiency trade-off superior to any other efficient approaches per any computational budget on the SQuAD1.1 dataset (up to x8.8 speedup with <1% accuracy loss). The code to reproduce this work is publicly available on Github.
translated by 谷歌翻译
与变压器架构相关的自我监督学习的最新进展使自然语言处理(NLP)表现出极低的困惑。如此强大的模型需要越来越多的模型大小,因此需要大量的计算和内存足迹。在本文中,我们为大规模生成语言模型提出了一个有效的推理框架。作为减少模型大小的关键,我们通过不均匀的量化方法量化权重。然后,我们提出的称为NUQMM的量化矩阵乘法加速了,该内核可以在压缩比和准确性之间进行广泛的权衡。我们提出的NUQMM不仅减少了每个GPU的延迟,还减少了大LMS的全部推断,因为高压缩比(通过低位量化)减轻了最小所需的GPU数量。我们证明NUQMM可以将GPT-3(175b)模型的推理速度加速约14.4倍,并将能源消耗降低93%。
translated by 谷歌翻译
为了部署,神经架构搜索应该是硬件感知的,以满足设备特定的约束(例如,内存使用,延迟和能量消耗),并提高模型效率。硬件感知NAS的现有方法从目标设备收集大量样本(例如,精度和延迟),要么构建查找表或延迟估计器。然而,这种方法在现实世界方案中是不切实际的,因为存在具有不同硬件规格的许多器件,并从这些大量设备收集样本将需要禁止的计算和货币成本。为了克服这些限制,我们提出了硬件 - 自适应高效延迟预测器(帮助),其将设备特定的延迟估计问题交给了元学习问题,使得我们可以估计模型对给定任务的性能的延迟有一些样品的看不见的装置。为此,我们引入了新颖的硬件嵌入,将任何设备嵌入,将其视为输出延迟的黑盒功能,并使用硬件嵌入式以设备依赖方式学习硬件自适应延迟预测器。我们验证了在看不见的平台上实现了延迟估计性能的提议帮助,其中它达到了高估计性能,少于10个测量样本,优于所有相关基线。我们还验证了在没有它的帮助下使用帮助的端到端NAS框架,并表明它在很大程度上降低了基础NAS方法的总时间成本,在延迟约束的设置中。代码可在https://github.com/hayeonlee/help获得。
translated by 谷歌翻译
我们提出了三种新型的修剪技术,以提高推理意识到的可区分神经结构搜索(DNAS)的成本和结果。首先,我们介绍了DNA的随机双路构建块,它可以通过内存和计算复杂性在内部隐藏尺寸上进行搜索。其次,我们在搜索过程中提出了一种在超级网的随机层中修剪块的算法。第三,我们描述了一种在搜索过程中修剪不必要的随机层的新技术。由搜索产生的优化模型称为Prunet,并在Imagenet Top-1图像分类精度的推理潜伏期中为NVIDIA V100建立了新的最先进的Pareto边界。将Prunet作为骨架还优于COCO对象检测任务的GPUNET和EFIDENENET,相对于平均平均精度(MAP)。
translated by 谷歌翻译
神经结构搜索(NAS)引起了日益增长的兴趣。为了降低搜索成本,最近的工作已经探讨了模型的重量分享,并在单枪NAS进行了重大进展。然而,已经观察到,单次模型精度较高的模型并不一定在独立培训时更好地执行更好。为了解决这个问题,本文提出了搜索空间的逐步自动设计,名为Pad-NAS。与超字幕中的所有层共享相同操作搜索空间的先前方法不同,我们根据操作修剪制定逐行搜索策略,并构建层面操作搜索空间。通过这种方式,Pad-NAS可以自动设计每层的操作,并在搜索空间质量和模型分集之间实现权衡。在搜索过程中,我们还考虑了高效神经网络模型部署的硬件平台约束。关于Imagenet的广泛实验表明我们的方法可以实现最先进的性能。
translated by 谷歌翻译
模型量化已成为加速深度学习推理的不可或缺的技术。虽然研究人员继续推动量化算法的前沿,但是现有量化工作通常是不可否认的和不可推销的。这是因为研究人员不选择一致的训练管道并忽略硬件部署的要求。在这项工作中,我们提出了模型量化基准(MQBench),首次尝试评估,分析和基准模型量化算法的再现性和部署性。我们为实际部署选择多个不同的平台,包括CPU,GPU,ASIC,DSP,并在统一培训管道下评估广泛的最新量化算法。 MQBENCK就像一个连接算法和硬件的桥梁。我们进行全面的分析,并找到相当大的直观或反向直观的见解。通过对齐训练设置,我们发现现有的算法在传统的学术轨道上具有大致相同的性能。虽然用于硬件可部署量化,但有一个巨大的精度差距,仍然不稳定。令人惊讶的是,没有现有的算法在MQBench中赢得每一项挑战,我们希望这项工作能够激发未来的研究方向。
translated by 谷歌翻译
基于惯性数据的人类活动识别(HAR)是从智能手机到超低功率传感器的嵌入式设备上越来越扩散的任务。由于深度学习模型的计算复杂性很高,因此大多数嵌入式HAR系统基于简单且不那么精确的经典机器学习算法。这项工作弥合了在设备上的HAR和深度学习之间的差距,提出了一组有效的一维卷积神经网络(CNN),可在通用微控制器(MCUS)上部署。我们的CNN获得了将超参数优化与子字节和混合精确量化的结合,以在分类结果和记忆职业之间找到良好的权衡。此外,我们还利用自适应推断作为正交优化,以根据处理后的输入来调整运行时的推理复杂性,从而产生更灵活的HAR系统。通过在四个数据集上进行实验,并针对超低功率RISC-V MCU,我们表明(i)我们能够为HAR获得一组丰富的帕累托(Pareto)最佳CNN,以范围超过1个数量级记忆,潜伏期和能耗; (ii)由于自适应推断,我们可以从单个CNN开始得出> 20个运行时操作模式,分类分数的不同程度高达10%,并且推理复杂性超过3倍,并且内存开销有限; (iii)在四个基准中的三个基准中,我们的表现都超过了所有以前的深度学习方法,将记忆占用率降低了100倍以上。获得更好性能(浅层和深度)的少数方法与MCU部署不兼容。 (iv)我们所有的CNN都与推理延迟<16ms的实时式evice Har兼容。他们的记忆职业在0.05-23.17 kb中有所不同,其能源消耗为0.005和61.59 UJ,可在较小的电池供应中进行多年的连续操作。
translated by 谷歌翻译
由于神经网络变得更加强大,因此在现实世界中部署它们的愿望是一个上升的愿望;然而,神经网络的功率和准确性主要是由于它们的深度和复杂性,使得它们难以部署,尤其是在资源受限的设备中。最近出现了神经网络量化,以满足这种需求通过降低网络的精度来降低神经网络的大小和复杂性。具有较小和更简单的网络,可以在目标硬件的约束中运行神经网络。本文调查了在过去十年中开发的许多神经网络量化技术。基于该调查和神经网络量化技术的比较,我们提出了该地区的未来研究方向。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
不断需要在低容量设备上使用的图像超分辨率(SR)的高性能和计算有效的神经网络模型。获取此类模型的一种方法是压缩现有体系结构,例如量化。另一个选择是发现新的有效解决方案的神经体系结构搜索(NAS)。我们为专门设计的SR搜索空间提出了一种新颖的量化NAS程序。我们的方法执行NAS以找到量化友好的SR模型。搜索依赖于将量化噪声添加到参数和激活中,而不是直接量化参数。我们的Quontnas比固定体系结构的均匀或混合精度量化找到了具有更好的PSNR/BITOP权衡的体系结构。此外,我们对噪声过程的搜索比直接量化权重的速度快30%。
translated by 谷歌翻译
深神经网络(DNN)已成为许多应用程序域(包括基于Web的服务)的重要组成部分。这些服务需要高吞吐量和(接近)实时功能,例如,对用户的请求做出反应或反应,或者按时处理传入数据流。但是,DNN设计的趋势是朝着具有许多层和参数的较大模型,以实现更准确的结果。尽管这些模型通常是预先训练的,但是在如此大的模型中,计算复杂性仍然相对显着,从而阻碍了低推断潜伏期。实施缓存机制是用于加速服务响应时间的典型系统工程解决方案。但是,传统的缓存通常不适合基于DNN的服务。在本文中,我们提出了一种端到端自动化解决方案,以根据其计算复杂性和推理延迟来提高基于DNN的服务的性能。我们的缓存方法采用了DNN模型和早期出口的自我介绍的思想。提出的解决方案是一种自动化的在线层缓存机制,如果提前出口之一中的高速缓存模型足够有信心,则可以在推理时间提早退出大型模型。本文的主要贡献之一是,我们将该想法实施为在线缓存,这意味着缓存模型不需要访问培训数据,并且仅根据运行时的传入数据执行,使其适用于应用程序使用预训练的模型。我们的实验在两个下游任务(面部和对象分类)上结果表明,平均而言,缓存可以将这些服务的计算复杂性降低到58 \%(就FLOPS计数而言),并将其推断潜伏期提高到46 \%精度低至零至零。
translated by 谷歌翻译