我们介绍了延迟感知网络加速度(LANA) - 一种在神经结构上建立的方法,用于加速神经网络的神经结构搜索技术和教师学生蒸馏。 Lana由两个阶段组成:在第一阶段,它会使用层面特征映射蒸馏来列举每层教师网络的许多替代操作。在第二阶段,它解决了使用新颖的整数线性优化(ILP)方法的有效操作的组合选择。 ILP带来独特的属性,因为它(i)在几秒钟内执行NAS,(ii)轻松满足预算约束,(iii)在图层粒度上工作,(iv)支持巨大的搜索空间$ o(10 ^ { 100})$,超越先前的搜索方法,效率和效率。在广泛的实验中,我们表明Lana产生了由目标潜伏期预算限制的有效和准确的模型,同时比其他技术明显快。我们分析了三个流行的网络架构:高效的网络,高效网络和reses,并在压缩较大模型的较小模型的延迟级别时,实现所有型号(高达3.0 \%$)的准确性改进。 Lana通过GPU和CPU实现显着的加速(高达5美元\倍),以没有准确性下降。代码将很快分享。
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
我们提出了三种新型的修剪技术,以提高推理意识到的可区分神经结构搜索(DNAS)的成本和结果。首先,我们介绍了DNA的随机双路构建块,它可以通过内存和计算复杂性在内部隐藏尺寸上进行搜索。其次,我们在搜索过程中提出了一种在超级网的随机层中修剪块的算法。第三,我们描述了一种在搜索过程中修剪不必要的随机层的新技术。由搜索产生的优化模型称为Prunet,并在Imagenet Top-1图像分类精度的推理潜伏期中为NVIDIA V100建立了新的最先进的Pareto边界。将Prunet作为骨架还优于COCO对象检测任务的GPUNET和EFIDENENET,相对于平均平均精度(MAP)。
translated by 谷歌翻译
针对变压器的神经体系结构搜索(NAS)已用于创建针对某些延迟约束的最新模型。在这项工作中,我们提出了更大,更快的速度,这是一种新颖的量化参数共享NAS,它为8位整数(INT8)量化变压器的架构。我们的结果表明,我们的方法能够产生胜过当前最新技术的BERT模型,即Autotinybert,我们测试了所有潜伏期目标,达到了2.68%的准确性增益。此外,尽管我们技术发现的模型的参数数量比float32的参数数量更大,但由于其参数为INT8,但它们的内存足迹大大较小。
translated by 谷歌翻译
Designing accurate and efficient ConvNets for mobile devices is challenging because the design space is combinatorially large. Due to this, previous neural architecture search (NAS) methods are computationally expensive. ConvNet architecture optimality depends on factors such as input resolution and target devices. However, existing approaches are too resource demanding for case-by-case redesigns. Also, previous work focuses primarily on reducing FLOPs, but FLOP count does not always reflect actual latency. To address these, we propose a differentiable neural architecture search (DNAS) framework that uses gradient-based methods to optimize Con-vNet architectures, avoiding enumerating and training individual architectures separately as in previous methods. FBNets (Facebook-Berkeley-Nets), a family of models discovered by DNAS surpass state-of-the-art models both designed manually and generated automatically. FBNet-B achieves 74.1% top-1 accuracy on ImageNet with 295M FLOPs and 23.1 ms latency on a Samsung S8 phone, 2.4x smaller and 1.5x faster than MobileNetV2-1.3[17] with similar accuracy. Despite higher accuracy and lower latency than MnasNet[20], we estimate FBNet-B's search cost is 420x smaller than MnasNet's, at only 216 GPUhours. Searched for different resolutions and channel sizes, FBNets achieve 1.5% to 6.4% higher accuracy than Mo-bileNetV2. The smallest FBNet achieves 50.2% accuracy and 2.9 ms latency (345 frames per second) on a Samsung S8. Over a Samsung-optimized FBNet, the iPhone-Xoptimized model achieves a 1.4x speedup on an iPhone X. FBNet models are open-sourced at https://github. com/facebookresearch/mobile-vision. * Work done while interning at Facebook.… Figure 1. Differentiable neural architecture search (DNAS) for ConvNet design. DNAS explores a layer-wise space that each layer of a ConvNet can choose a different block. The search space is represented by a stochastic super net. The search process trains the stochastic super net using SGD to optimize the architecture distribution. Optimal architectures are sampled from the trained distribution. The latency of each operator is measured on target devices and used to compute the loss for the super net.
translated by 谷歌翻译
混合精确的深神经网络达到了硬件部署所需的能源效率和吞吐量,尤其是在资源有限的情况下,而无需牺牲准确性。但是,不容易找到保留精度的最佳每层钻头精度,尤其是在创建巨大搜索空间的大量模型,数据集和量化技术中。为了解决这一困难,最近出现了一系列文献,并且已经提出了一些实现有希望的准确性结果的框架。在本文中,我们首先总结了文献中通常使用的量化技术。然后,我们对混合精液框架进行了彻底的调查,该调查是根据其优化技术进行分类的,例如增强学习和量化技术,例如确定性舍入。此外,讨论了每个框架的优势和缺点,我们在其中呈现并列。我们最终为未来的混合精液框架提供了指南。
translated by 谷歌翻译
卷积神经网络(CNNS)用于许多现实世界应用,例如基于视觉的自主驾驶和视频内容分析。要在各种目标设备上运行CNN推断,硬件感知神经结构搜索(NAS)至关重要。有效的硬件感知NAS的关键要求是对推理延迟的快速评估,以便对不同的架构进行排名。在构建每个目标设备的延迟预测器的同时,在本领域中通常使用,这是一个非常耗时的过程,在极定的设备存在下缺乏可扩展性。在这项工作中,我们通过利用延迟单调性来解决可扩展性挑战 - 不同设备上的架构延迟排名通常相关。当存在强烈的延迟单调性时,我们可以重复使用在新目标设备上搜索一个代理设备的架构,而不会丢失最佳状态。在没有强烈的延迟单调性的情况下,我们提出了一种有效的代理适应技术,以显着提高延迟单调性。最后,我们验证了我们的方法,并在多个主流搜索空间上使用不同平台的设备进行实验,包括MobileNet-V2,MobileNet-V3,NAS-Bench-201,Proxylessnas和FBNet。我们的结果突出显示,通过仅使用一个代理设备,我们可以找到几乎与现有的每个设备NAS相同的帕累托最优架构,同时避免为每个设备构建延迟预测器的禁止成本。 github:https://github.com/ren-research/oneproxy.
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
We revisit the one-shot Neural Architecture Search (NAS) paradigm and analyze its advantages over existing NAS approaches. Existing one-shot method, however, is hard to train and not yet effective on large scale datasets like ImageNet. This work propose a Single Path One-Shot model to address the challenge in the training. Our central idea is to construct a simplified supernet, where all architectures are single paths so that weight co-adaption problem is alleviated. Training is performed by uniform path sampling. All architectures (and their weights) are trained fully and equally. Comprehensive experiments verify that our approach is flexible and effective. It is easy to train and fast to search. It effortlessly supports complex search spaces (e.g., building blocks, channel, mixed-precision quantization) and different search constraints (e.g., FLOPs, latency). It is thus convenient to use for various needs. It achieves start-of-the-art performance on the large dataset ImageNet.Equal contribution. This work is done when Haoyuan Mu and Zechun Liu are interns at MEGVII Technology.
translated by 谷歌翻译
AD相关建模在包括Microsoft Bing在内的在线广告系统中起着至关重要的作用。为了利用强大的变压器在这种低延迟设置中,许多现有方法脱机执行广告端计算。虽然有效,但这些方法无法提供冷启动广告,从而导致对此类广告的相关性预测不佳。这项工作旨在通过结构化修剪设计一种新的低延迟BERT,以在CPU平台上授权实时在线推断对Cold Start Ads相关性。我们的挑战是,以前的方法通常将变压器的所有层都缩减为高,均匀的稀疏性,从而产生无法以可接受的精度实现令人满意的推理速度的模型。在本文中,我们提出了SwiftPruner - 一个有效的框架,利用基于进化的搜索自动在所需的延迟约束下自动找到表现最佳的稀疏BERT模型。与进行随机突变的现有进化算法不同,我们提出了一个具有潜伏意见的多目标奖励的增强突变器,以进行更好的突变,以有效地搜索层稀疏模型的大空间。广泛的实验表明,与均匀的稀疏基线和最先进的搜索方法相比,我们的方法始终达到更高的ROC AUC和更低的潜伏度。值得注意的是,根据我们在1900年的延迟需求,SwiftPruner的AUC比Bert-Mini在大型现实世界数据集中的最先进的稀疏基线高0.86%。在线A/B测试表明,我们的模型还达到了有缺陷的冷启动广告的比例,并获得了令人满意的实时服务延迟。
translated by 谷歌翻译
在这项工作中,我们提出了一种方法,以准确评估和比较有效的神经网络构建块的性能,以硬件感知方式进行计算机视觉。我们的比较使用了基于设计空间的随机采样网络的帕累托前沿来捕获潜在的准确性/复杂性权衡。我们表明,我们的方法允许通过以前的比较范例获得的信息匹配,但对硬件成本和准确性之间的关系提供了更多见解。我们使用我们的方法来分析不同的构件并评估其在一系列嵌入式硬件平台上的性能。这突出了基准构建块作为神经网络设计过程中的预选步骤的重要性。我们表明,选择合适的构件可以在特定硬件ML加速器上加快推理的速度2倍。
translated by 谷歌翻译
知识蒸馏(KD)最近成为压缩神经网络的一种流行方法。在最近的研究中,已经提出了同时找到学生模型的参数和体系结构的广义蒸馏方法。尽管如此,这种搜索方法仍需要大量的计算来搜索体系结构,并且缺点是仅考虑其搜索空间中的卷积块。本文介绍了一种新的算法,认为是信任区域意识架构搜索以有效提炼知识(贸易),该算法迅速找到了使用信任区域贝叶斯优化方法从几种最先进的架构中找到有效的学生体系结构。实验结果表明,我们提出的贸易算法始终优于KD培训下的常规NAS方法和预定义的架构。
translated by 谷歌翻译
神经结构搜索(NAS)引起了日益增长的兴趣。为了降低搜索成本,最近的工作已经探讨了模型的重量分享,并在单枪NAS进行了重大进展。然而,已经观察到,单次模型精度较高的模型并不一定在独立培训时更好地执行更好。为了解决这个问题,本文提出了搜索空间的逐步自动设计,名为Pad-NAS。与超字幕中的所有层共享相同操作搜索空间的先前方法不同,我们根据操作修剪制定逐行搜索策略,并构建层面操作搜索空间。通过这种方式,Pad-NAS可以自动设计每层的操作,并在搜索空间质量和模型分集之间实现权衡。在搜索过程中,我们还考虑了高效神经网络模型部署的硬件平台约束。关于Imagenet的广泛实验表明我们的方法可以实现最先进的性能。
translated by 谷歌翻译
We present the next generation of MobileNets based on a combination of complementary search techniques as well as a novel architecture design. MobileNetV3 is tuned to mobile phone CPUs through a combination of hardwareaware network architecture search (NAS) complemented by the NetAdapt algorithm and then subsequently improved through novel architecture advances. This paper starts the exploration of how automated search algorithms and network design can work together to harness complementary approaches improving the overall state of the art. Through this process we create two new MobileNet models for release: MobileNetV3-Large and MobileNetV3-Small which are targeted for high and low resource use cases. These models are then adapted and applied to the tasks of object detection and semantic segmentation. For the task of semantic segmentation (or any dense pixel prediction), we propose a new efficient segmentation decoder Lite Reduced Atrous Spatial Pyramid Pooling (LR-ASPP). We achieve new state of the art results for mobile classification, detection and segmentation. MobileNetV3-Large is 3.2% more accurate on ImageNet classification while reducing latency by 20% compared to MobileNetV2. MobileNetV3-Small is 6.6% more accurate compared to a MobileNetV2 model with comparable latency. MobileNetV3-Large detection is over 25% faster at roughly the same accuracy as Mo-bileNetV2 on COCO detection. MobileNetV3-Large LR-ASPP is 34% faster than MobileNetV2 R-ASPP at similar accuracy for Cityscapes segmentation.
translated by 谷歌翻译
为了部署,神经架构搜索应该是硬件感知的,以满足设备特定的约束(例如,内存使用,延迟和能量消耗),并提高模型效率。硬件感知NAS的现有方法从目标设备收集大量样本(例如,精度和延迟),要么构建查找表或延迟估计器。然而,这种方法在现实世界方案中是不切实际的,因为存在具有不同硬件规格的许多器件,并从这些大量设备收集样本将需要禁止的计算和货币成本。为了克服这些限制,我们提出了硬件 - 自适应高效延迟预测器(帮助),其将设备特定的延迟估计问题交给了元学习问题,使得我们可以估计模型对给定任务的性能的延迟有一些样品的看不见的装置。为此,我们引入了新颖的硬件嵌入,将任何设备嵌入,将其视为输出延迟的黑盒功能,并使用硬件嵌入式以设备依赖方式学习硬件自适应延迟预测器。我们验证了在看不见的平台上实现了延迟估计性能的提议帮助,其中它达到了高估计性能,少于10个测量样本,优于所有相关基线。我们还验证了在没有它的帮助下使用帮助的端到端NAS框架,并表明它在很大程度上降低了基础NAS方法的总时间成本,在延迟约束的设置中。代码可在https://github.com/hayeonlee/help获得。
translated by 谷歌翻译
从搜索效率中受益,可区分的神经体系结构搜索(NAS)已发展为自动设计竞争性深神经网络(DNNS)的最主要替代品。我们注意到,必须在现实世界中严格的性能限制下执行DNN,例如,自动驾驶汽车的运行时间延迟。但是,要获得符合给定性能限制的体系结构,先前的硬件可区分的NAS方法必须重复多次搜索运行,以通过反复试验和错误手动调整超参数,因此总设计成本会成比例地增加。为了解决这个问题,我们引入了一个轻巧的硬件可区分的NAS框架,称为lightnas,努力找到所需的架构,通过一次性搜索来满足各种性能约束(即,\ \ suesperline {\ textIt {您只搜索一次}})) 。进行了广泛的实验,以显示LINDNA的优越性,而不是先前的最新方法。
translated by 谷歌翻译
深度神经网络(DNN)的算法 - 硬件共同设计的最新进展已经证明了它们在自动设计神经架构和硬件设计方面的潜力。然而,由于昂贵的培训成本和耗时的硬件实现,这仍然是一个充满挑战的优化问题,这使得对神经结构和硬件设计难以解答的巨大设计空间探索。在本文中,我们证明我们所提出的方法能够在帕累托前沿定位设计。这种功能由新颖的三相协同设计框架启用,具有以下新功能:(a)从硬件架构和神经结构的设计空间探索的DNN培训解耦,(b)提供硬件友好的神经结构空间通过考虑构造搜索单元的硬件特征,(c)采用高斯过程来预测准确性,延迟和功耗以避免耗时的合成和路由过程。与手动设计的Resnet101,Inceptionv2和MobileNetv2相比,我们可以在想象网数据集中获得高达3倍的准确度,高达5%的准确性。与其他最先进的共同设计框架相比,我们发现的网络和硬件配置可以达到更高的2%〜6%,精度为2倍〜26倍,延迟较高8.5倍。
translated by 谷歌翻译
Neural architecture search (NAS) has a great impact by automatically designing effective neural network architectures. However, the prohibitive computational demand of conventional NAS algorithms (e.g. 10 4 GPU hours) makes it difficult to directly search the architectures on large-scale tasks (e.g. ImageNet). Differentiable NAS can reduce the cost of GPU hours via a continuous representation of network architecture but suffers from the high GPU memory consumption issue (grow linearly w.r.t. candidate set size). As a result, they need to utilize proxy tasks, such as training on a smaller dataset, or learning with only a few blocks, or training just for a few epochs. These architectures optimized on proxy tasks are not guaranteed to be optimal on the target task. In this paper, we present ProxylessNAS that can directly learn the architectures for large-scale target tasks and target hardware platforms. We address the high memory consumption issue of differentiable NAS and reduce the computational cost (GPU hours and GPU memory) to the same level of regular training while still allowing a large candidate set. Experiments on CIFAR-10 and ImageNet demonstrate the effectiveness of directness and specialization. On CIFAR-10, our model achieves 2.08% test error with only 5.7M parameters, better than the previous state-of-the-art architecture AmoebaNet-B, while using 6× fewer parameters. On ImageNet, our model achieves 3.1% better top-1 accuracy than MobileNetV2, while being 1.2× faster with measured GPU latency. We also apply ProxylessNAS to specialize neural architectures for hardware with direct hardware metrics (e.g. latency) and provide insights for efficient CNN architecture design. 1
translated by 谷歌翻译
深神经网络(DNNS)在各种机器学习(ML)应用程序中取得了巨大成功,在计算机视觉,自然语言处理和虚拟现实等中提供了高质量的推理解决方案。但是,基于DNN的ML应用程序也带来计算和存储要求的增加了很多,对于具有有限的计算/存储资源,紧张的功率预算和较小形式的嵌入式系统而言,这尤其具有挑战性。挑战还来自各种特定应用的要求,包括实时响应,高通量性能和可靠的推理准确性。为了应对这些挑战,我们介绍了一系列有效的设计方法,包括有效的ML模型设计,定制的硬件加速器设计以及硬件/软件共同设计策略,以启用嵌入式系统上有效的ML应用程序。
translated by 谷歌翻译