基于强化学习(RL)的最先进的决策系统是数据驱动的黑盒神经模型,在那里通常难以将专家知识纳入模型或让专家审查和验证学习决策机制。知识插入和模型审查是许多涉及人类健康和安全的应用中的重要要求。一种桥接数据和知识驱动系统之间差距的方法是程序合成:替换用神经网络生成的符号节目或通过遗传编程输出决策的神经网络。我们提出了一种新的编程语言,BF ++,专为在部分观察到的马尔可夫决策过程(POMDP)设置中的代理程序自动编程,并应用神经节目综合来解决标准Openai健身房基准。
translated by 谷歌翻译
在这项研究中,我们将人工智力的普遍增强学习(URL)代理模型扩展到量子环境。经典探索随机知识寻求代理,KL-KSA的实用功能是从密度矩阵上量子信息理论的距离措施。量子处理断层扫描(QPT)算法形成了用于建模环境动态的易解的程序。基于基于算法复杂度以及计算资源复杂性的可变成本函数来选择最佳QPT策略。我们而不是提供机器,我们估计了高级语言的成本指标,以允许现实的实验。整个代理设计封装在自我复制Quine中,基于最佳策略选择方案的预测值突变成本函数。因此,具有帕累托 - 最佳QPT政策的多个代理商使用遗传编程而发展,模仿各种资源权衡的物理理论的发展。这一正式框架被称为量子知识寻求代理(QKSA)。尽管其重要性,但很少有量子强化学习模型与量子机器学习中的电流推力相反。 QKSA是类似于古典URL模型的框架的第一个提议。类似于AIXI-TL如何是SOLOMONOFF通用归纳的资源有限的活动版本,QKSA是一个资源有限的参与观察者框架,用于最近提出的基于量子力学的基于量子学的算法的重建。 QKSA可以应用于仿真和研究量子信息理论的方面。具体地,我们证明它可以用于加速量子变分算法,该算法包括断层重建作为其积分子程序。
translated by 谷歌翻译
Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
translated by 谷歌翻译
行为树(BT)是一种在自主代理中(例如机器人或计算机游戏中的虚拟实体)之间在不同任务之间进行切换的方法。 BT是创建模块化和反应性的复杂系统的一种非常有效的方法。这些属性在许多应用中至关重要,这导致BT从计算机游戏编程到AI和机器人技术的许多分支。在本书中,我们将首先对BTS进行介绍,然后我们描述BTS与早期切换结构的关系,并且在许多情况下如何概括。然后,这些想法被用作一套高效且易于使用的设计原理的基础。安全性,鲁棒性和效率等属性对于自主系统很重要,我们描述了一套使用BTS的状态空间描述正式分析这些系统的工具。借助新的分析工具,我们可以对BTS如何推广早期方法的形式形式化。我们还显示了BTS在自动化计划和机器学习中的使用。最后,我们描述了一组扩展的工具,以捕获随机BT的行为,其中动作的结果由概率描述。这些工具可以计算成功概率和完成时间。
translated by 谷歌翻译
强化学习和最近的深度增强学习是解决如Markov决策过程建模的顺序决策问题的流行方法。问题和选择算法和超参数的RL建模需要仔细考虑,因为不同的配置可能需要完全不同的性能。这些考虑因素主要是RL专家的任务;然而,RL在研究人员和系统设计师不是RL专家的其他领域中逐渐变得流行。此外,许多建模决策,例如定义状态和动作空间,批次的大小和批量更新的频率以及时间戳的数量通常是手动进行的。由于这些原因,RL框架的自动化不同组成部分具有重要意义,近年来它引起了很多关注。自动RL提供了一个框架,其中RL的不同组件包括MDP建模,算法选择和超参数优化是自动建模和定义的。在本文中,我们探讨了可以在自动化RL中使用的文献和目前的工作。此外,我们讨论了Autorl中的挑战,打开问题和研究方向。
translated by 谷歌翻译
This paper surveys the eld of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the eld and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but di ers considerably in the details and in the use of the word \reinforcement." The paper discusses central issues of reinforcement learning, including trading o exploration and exploitation, establishing the foundations of the eld via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
translated by 谷歌翻译
强化学习的关键挑战是解决了长地平规划问题。最近的工作已经利用计划在这些设置中引导钢筋学习。但是,这些方法对用户施加了高手动负担,因为它们必须为每项新任务提供指导计划。部分观察到的环境进一步使编程任务复杂化,因为程序必须实现正确,理想地最佳地实现策略,处理环境的隐藏区域的所有可能配置。我们提出了一种新的方法,模型预测程序合成(MPP),它使用程序综合来自动生成指导程序。它培训了一种生成模型来预测世界的未观察到的部分,然后以鲁棒到其不确定性的方式基于来自该模型的样本来综合程序。在我们的实验中,我们表明我们的方法在一组具有挑战性的基准上显着优于非程序引导的方法,包括2D Minecraft-Inspired环境,代理商必须完成复杂的子组织序列来实现其目标,并实现类似的使用手动程序指导代理的性能。我们的结果表明,我们的方法可以在不需要用户为每项新任务提供新的指导计划的情况下获得方案引导的强化学习的好处。
translated by 谷歌翻译
我们提出了一种新的方法来自动化定理证明和演绎计划的综合,其中alphazero式的代理人正在自我培训,以完善以非确定计划表示的高级专家策略。一个类似的教师代理人是自我训练,以产生对学习者的适当相关性和难度的任务。这允许利用最少的域知识来解决训练数据无法获得或难以合成的问题。我们说明了关于命令程序不变合成问题的方法,并使用神经网络来完善教师和求解器策略。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
Deep reinforcement learning is poised to revolutionise the field of AI and represents a step towards building autonomous systems with a higher level understanding of the visual world. Currently, deep learning is enabling reinforcement learning to scale to problems that were previously intractable, such as learning to play video games directly from pixels. Deep reinforcement learning algorithms are also applied to robotics, allowing control policies for robots to be learned directly from camera inputs in the real world. In this survey, we begin with an introduction to the general field of reinforcement learning, then progress to the main streams of value-based and policybased methods. Our survey will cover central algorithms in deep reinforcement learning, including the deep Q-network, trust region policy optimisation, and asynchronous advantage actor-critic. In parallel, we highlight the unique advantages of deep neural networks, focusing on visual understanding via reinforcement learning. To conclude, we describe several current areas of research within the field.
translated by 谷歌翻译
将有用的背景知识传达给加强学习(RL)代理是加速学习的重要方法。我们介绍了Rlang,这是一种特定领域的语言(DSL),用于将域知识传达给RL代理。与RL社区提出的其他现有DSL不同,该基础是决策形式主义的单个要素(例如,奖励功能或政策功能),RLANG可以指定有关马尔可夫决策过程中每个元素的信息。我们为rlang定义了精确的语法和基础语义,并提供了解析器实施,将rlang程序基于算法 - 敏捷的部分世界模型和政策,可以由RL代理利用。我们提供一系列示例RLANG程序,并演示不同的RL方法如何利用所得的知识,包括无模型和基于模型的表格算法,分层方法和深度RL算法(包括策略梯度和基于价值的方法)。
translated by 谷歌翻译
Imitation learning techniques aim to mimic human behavior in a given task. An agent (a learning machine) is trained to perform a task from demonstrations by learning a mapping between observations and actions. The idea of teaching by imitation has been around for many years, however, the field is gaining attention recently due to advances in computing and sensing as well as rising demand for intelligent applications. The paradigm of learning by imitation is gaining popularity because it facilitates teaching complex tasks with minimal expert knowledge of the tasks. Generic imitation learning methods could potentially reduce the problem of teaching a task to that of providing demonstrations; without the need for explicit programming or designing reward functions specific to the task. Modern sensors are able to collect and transmit high volumes of data rapidly, and processors with high computational power allow fast processing that maps the sensory data to actions in a timely manner. This opens the door for many potential AI applications that require real-time perception and reaction such as humanoid robots, self-driving vehicles, human computer interaction and computer games to name a few. However, specialized algorithms are needed to effectively and robustly learn models as learning by imitation poses its own set of challenges. In this paper, we survey imitation learning methods and present design options in different steps of the learning process. We introduce a background and motivation for the field as well as highlight challenges specific to the imitation problem. Methods for designing and evaluating imitation learning tasks are categorized and reviewed. Special attention is given to learning methods in robotics and games as these domains are the most popular in the literature and provide a wide array of problems and methodologies. We extensively discuss combining imitation learning approaches using different sources and methods, as well as incorporating other motion learning methods to enhance imitation. We also discuss the potential impact on industry, present major applications and highlight current and future research directions.
translated by 谷歌翻译
Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
我们通过在计算图的空间中搜索计算基于值的无模型RL代理以优化的计算函数来提出一种用于元学习增强学习算法的方法。学到的算法是域 - 不可思议的,可以推广到训练期间未见的新环境。我们的方法既可以从头开始学习,又可以从已知的现有算法(例如DQN)学习,从而实现可解释的修改,从而改善性能。从头开始学习简单的经典控制和网格世界任务,我们的方法重新发现了时间差异(TD)算法。我们从DQN进行了引导,我们重点介绍了两种学到的算法,这些算法比其他经典控制任务,GridWorld类型任务和Atari游戏获得了良好的概括性能。对学习算法行为的分析表明,与最近提出的RL算法相似,该算法解决了基于价值的方法的高估。
translated by 谷歌翻译
最近,深增强学习(DRL)方法在各种域中的任务方面取得了令人印象深刻的性能。然而,用DRL方法产生的神经网络政策不是人为可解释的,并且通常难以推广到新颖的情景。为了解决这些问题,事先作品探索学习更具可诠释和构建的概括的程序政策。然而,这些作品要么采用有限的政策表示(例如,决策树,状态机或预定义的程序模板)或需要更强的监督(例如输入/输出状态对或专家演示)。我们提出了一个框架,而是学习合成一个程序,该程序详细介绍了以灵活和表现力的方式解决任务的过程,仅来自奖励信号。为了减轻学习难以从头开始诱发所需的代理行为的难度,我们建议首先了解一个程序嵌入空间,以不传达的方式连续参加各种行为,然后搜索嵌入空间以产生程序最大化给定任务的返回。实验结果表明,所提出的框架不仅可以可靠地综合任务解决方案,而且在产生可解释和更广泛的政策的同时优于DRL和程序合成基线。我们还可以证明所提出的两级学习计划的必要性,并分析了学习计划嵌入的各种方法。
translated by 谷歌翻译
Alphazero,Leela Chess Zero和Stockfish Nnue革新了计算机国际象棋。本书对此类引擎的技术内部工作进行了完整的介绍。该书分为四个主要章节 - 不包括第1章(简介)和第6章(结论):第2章引入神经网络,涵盖了所有用于构建深层网络的基本构建块,例如Alphazero使用的网络。内容包括感知器,后传播和梯度下降,分类,回归,多层感知器,矢量化技术,卷积网络,挤压网络,挤压和激发网络,完全连接的网络,批处理归一化和横向归一化和跨性线性单位,残留层,剩余层,过度效果和底漆。第3章介绍了用于国际象棋发动机以及Alphazero使用的经典搜索技术。内容包括minimax,alpha-beta搜索和蒙特卡洛树搜索。第4章展示了现代国际象棋发动机的设计。除了开创性的Alphago,Alphago Zero和Alphazero我们涵盖Leela Chess Zero,Fat Fritz,Fat Fritz 2以及有效更新的神经网络(NNUE)以及MAIA。第5章是关于实施微型α。 Shexapawn是国际象棋的简约版本,被用作为此的示例。 Minimax搜索可以解决六ap峰,并产生了监督学习的培训位置。然后,作为比较,实施了类似Alphazero的训练回路,其中通过自我游戏进行训练与强化学习结合在一起。最后,比较了类似α的培训和监督培训。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
Besides the recent impressive results on reinforcement learning (RL), safety is still one of the major research challenges in RL. RL is a machine-learning approach to determine near-optimal policies in Markov decision processes (MDPs). In this paper, we consider the setting where the safety-relevant fragment of the MDP together with a temporal logic safety specification is given and many safety violations can be avoided by planning ahead a short time into the future. We propose an approach for online safety shielding of RL agents. During runtime, the shield analyses the safety of each available action. For any action, the shield computes the maximal probability to not violate the safety specification within the next $k$ steps when executing this action. Based on this probability and a given threshold, the shield decides whether to block an action from the agent. Existing offline shielding approaches compute exhaustively the safety of all state-action combinations ahead of time, resulting in huge computation times and large memory consumption. The intuition behind online shielding is to compute at runtime the set of all states that could be reached in the near future. For each of these states, the safety of all available actions is analysed and used for shielding as soon as one of the considered states is reached. Our approach is well suited for high-level planning problems where the time between decisions can be used for safety computations and it is sustainable for the agent to wait until these computations are finished. For our evaluation, we selected a 2-player version of the classical computer game SNAKE. The game represents a high-level planning problem that requires fast decisions and the multiplayer setting induces a large state space, which is computationally expensive to analyse exhaustively.
translated by 谷歌翻译