顺序推荐系统通过捕获用户的兴趣漂移来显示有效的建议。有两组现有的顺序模型:以用户和项目为中心的模型。以用户为中心的模型根据每个用户的顺序消费历史记录来捕获个性化的利息漂移,但没有明确考虑用户对项目的利益是否超出培训时间,即利息可持续性。另一方面,以项目为中心的模型考虑了用户在培训时间后的一般利益是否维持,但不是个性化的。在这项工作中,我们提出了一个推荐系统,将两类模型的优势占据优势。我们提出的模型捕获了个性化的利息可持续性,表明每个用户对物品的利益是否会超出培训时间。我们首先制定一项任务,该任务需要根据用户的消费历史记录预测培训时间中每个用户将消耗哪些项目。然后,我们提出简单而有效的方案,以增强用户的稀疏消费历史记录。广泛的实验表明,所提出的模型在11个现实世界数据集上的表现优于10个基线模型。这些代码可在https://github.com/dmhyun/peris上找到。
translated by 谷歌翻译
推荐兴趣点是一个困难的问题,需要从基于位置的社交媒体平台中提取精确的位置信息。对于这种位置感知的推荐系统而言,另一个具有挑战性和关键的问题是根据用户的历史行为对用户的偏好进行建模。我们建议使用Transformers的双向编码器表示的位置感知建议系统,以便为用户提供基于位置的建议。提出的模型包含位置数据和用户偏好。与在序列中预测每个位置的下一项(位置)相比,我们的模型可以为用户提供更相关的结果。基准数据集上的广泛实验表明,我们的模型始终优于各种最新的顺序模型。
translated by 谷歌翻译
现代推荐系统需要适应用户偏好和项目人气的变化。这种问题被称为时间动态问题,它是推荐系统建模中的主要挑战之一。与流行的反复建模方法不同,我们通过使用基于轨迹的元学习来模型依赖性将一个名为LeNprec的新解决方案提出了一个名为LeNprec的新解决方案。 Leaprec通过命名为全局时间Leap(GTL)的两个补充组件来表征时间动态,并订购时间Leap(OTL)。通过设计,GTL通过找到无序时间数据的最短学习路径来学习长期模式。协同地,OTL通过考虑时间数据的顺序性质来学习短期模式。我们的实验结果表明,LeNPrec在几个数据集和推荐指标上始终如一地优于最先进的方法。此外,我们提供了GTL和OTL之间的相互作用的实证研究,显示了长期和短期建模的影响。
translated by 谷歌翻译
在大数据时代,推荐系统在我们日常生活中的关键信息过滤表现出了杰出的成功。近年来,推荐系统的技术发展,从感知学习到认知推理,这些认知推理将推荐任务作为逻辑推理的过程,并取得了重大改进。但是,推理中的逻辑陈述隐含地承认有序无关紧要,甚至没有考虑在许多建议任务中起重要作用的时间信息。此外,与时间上下文合并的建议模型往往是自我集中的,即自动更加(少)将相关性(不相关)分别集中在相关性上。为了解决这些问题,在本文中,我们提出了一种基于神经协作推理(TISANCR)的推荐模型的时间感知自我注意力,该模型将时间模式和自我注意机制集成到基于推理的建议中。特别是,以相对时间为代表的时间模式,提供上下文和辅助信息来表征用户在建议方面的偏好,而自我注意力则是利用自我注意力来提炼信息的模式并抑制无关紧要的。因此,自我煽动的时间信息的融合提供了对用户偏好的更深入表示。基准数据集的广泛实验表明,所提出的Tisancr取得了重大改进,并始终优于最先进的建议方法。
translated by 谷歌翻译
预测短期交互会话的下一个交互是基于会话的推荐中的一个具有挑战性的任务。几乎所有现有的作品都依赖于项目转换模式,并在建模用户偏好时忽略用户历史会话的影响,这通常会导致非个性化推荐。此外,基于现有的个性化会话的推荐人仅基于当前用户的会话捕获用户首选项,而是忽略来自其他用户的历史会话的有用物品转换模式。为了解决这些问题,我们提出了一种新颖的异构全球图形神经网络(HG-GNN)以以微妙的方式利用所有会话的物品过渡,以便更好地推断用户偏好与当前和历史会话。为了有效利用所有用户的所有会话转换,我们提出了一种新的异构全局图,该图包含会话,用户项交互和全局共同发生项目的项目转换。此外,为了综合地从会话中捕获用户偏好,我们建议通过两个图形增强偏好编码器学习来自全局图的两个用户表示。具体地,我们在异构全球图上设计一种新的异构图形神经网络(HGNN),以了解具有丰富语义的长期用户偏好和项目表示。基于HGNN,我们提出了当前偏好编码器和历史偏好编码器,分别捕获来自当前和历史会话的不同级别的用户偏好。为实现个性化建议,我们将用户当前偏好和历史利益的表示集成到生成最终用户首选项表示。三个真实数据集的广泛实验结果表明,我们的模型优于其他最先进的方法。
translated by 谷歌翻译
许多现代的顺序推荐系统使用深层神经网络,可以有效地估计项目的相关性,但需要大量时间进行训练。慢速培训增加了费用,阻碍了产品开发时间表,并防止该模型定期更新以适应不断变化的用户偏好。培训这样的顺序模型涉及对过去的用户互动进行适当采样以创建现实的培训目标。现有的培训目标有局限性。例如,下一个项目预测永远不会将序列的开头用作学习目标,从而可能丢弃有价值的数据。另一方面,Bert4Rec使用的项目掩盖仅与顺序建议的目标无关。因此,它需要更多的时间来获得有效的模型。因此,我们提出了一个基于新颖的序列训练目标采样,以解决这两个局限性。我们将我们的方法应用于最近和最新的模型架构,例如Gru4Rec,Caser和Sasrec。我们表明,通过我们的方法增强的模型可以实现超过或非常接近bert4rec的状态的性能,但训练时间却少得多。
translated by 谷歌翻译
在隐性反馈推荐中,将短期偏好纳入推荐系统近年来引起了不断的关注。但是,在历史交互中的意外行为,如偶然点击一些物品,也不能反映用户固有的偏好。现有研究未能模拟意外行为的影响,从而实现劣等的推荐性能。在本文中,我们提出了一种多偏好模型(MPM)来消除意外行为的影响。 MPM首先通过细粒度的偏好模块从最近的历史交互中提取用户的即时偏好。然后,培训意外行为检测器以判断这些即时偏好是否由意外行为偏置。我们还将用户的一般偏好集成在MPM中。最后,执行输出模块以消除意外行为的影响,并集成所有信息以进行最终推荐。我们在电影的两个数据集和电子零售中进行广泛的实验,展示了我们在最先进的方法上的模型的显着改进。实验结果表明,MPM在HR @ 10和NDCG @ 10中获得了大规模的改善,平均与斯trec模型相比相对增加了3.643%和4.107%。我们在https://github.com/chenjie04/mpm/发布我们的代码。
translated by 谷歌翻译
用户嵌入(用户的矢量化表示)对于推荐系统至关重要。已经提出了许多方法来为用户构建代表性,以找到用于检索任务的类似项目,并且已被证明在工业推荐系统中也有效。最近,人们发现使用多个嵌入式代表用户的能力,希望每个嵌入代表用户对某个主题的兴趣。通过多息表示,重要的是要对用户对不同主题的喜好进行建模以及偏好如何随时间变化。但是,现有方法要么无法估算用户对每个利息的亲和力,要么不合理地假设每个用户的每一个利息随时间而逐渐消失,从而损害了候选人检索的召回。在本文中,我们提出了多功能偏好(MIP)模型,这种方法不仅可以通过更有效地使用用户的顺序参与来为用户产生多种利益因此,可以按比例地从每个利息中检索候选人。在各种工业规模的数据集上进行了广泛的实验,以证明我们方法的有效性。
translated by 谷歌翻译
Over the past decade, tremendous progress has been made in Recommender Systems (RecSys) for well-known tasks such as next-item and next-basket prediction. On the other hand, the recently proposed next-period recommendation (NPR) task is not covered as much. Current works about NPR are mostly based around distinct problem formulations, methods, and proprietary datasets, making solutions difficult to reproduce. In this article, we aim to fill the gap in RecSys methods evaluation on the NPR task using publicly available datasets and (1) introduce the TTRS, a large-scale financial transactions dataset suitable for RecSys methods evaluation; (2) benchmark popular RecSys approaches on several datasets for the NPR task. When performing our analysis, we found a strong repetitive consumption pattern in several real-world datasets. With this setup, our results suggest that the repetitive nature of data is still hard to generalize for the evaluated RecSys methods, and novel item prediction performance is still questionable.
translated by 谷歌翻译
对于许多在线平台(例如,视频共享网站,电子商务系统),学习动态用户的偏好已成为越来越重要的组成部分,以提出顺序建议。先前的工作已经做出了许多努力,以基于各种体系结构(例如,经常性的神经网络和自我注意机制)对用户交互序列进行建模项目项目过渡。最近出现的图形神经网络还用作有用的骨干模型,可在顺序推荐方案中捕获项目依赖性。尽管它们有效,但现有的方法却远远集中在具有单一相互作用类型的项目序列表示上,因此仅限于捕获用户和项目之间的动态异质关系结构(例如,页面视图,添加最佳选择,购买,购买)。为了应对这一挑战,我们设计了多行为超毛力增强的变压器框架(MBHT),以捕获短期和长期跨型行为依赖性。具体而言,多尺度变压器配备了低级别的自我注意力,可从细粒度和粗粒水平的共同编码行为感知的顺序模式。此外,我们将全局多行为依赖性纳入HyperGraph神经体系结构中,以自定义的方式捕获层次长期项目相关性。实验结果证明了我们MBHT在不同环境中的各种最新推荐解决方案的优势。进一步的消融研究证明了我们的模型设计和新MBHT框架的好处的有效性。我们的实施代码在以下网址发布:https://github.com/yuh-yang/mbht-kdd22。
translated by 谷歌翻译
Session-Based Recommenders (SBRs) aim to predict users' next preferences regard to their previous interactions in sessions while there is no historical information about them. Modern SBRs utilize deep neural networks to map users' current interest(s) during an ongoing session to a latent space so that their next preference can be predicted. Although state-of-art SBR models achieve satisfactory results, most focus on studying the sequence of events inside sessions while ignoring temporal details of those events. In this paper, we examine the potential of session temporal information in enhancing the performance of SBRs, conceivably by reflecting the momentary interests of anonymous users or their mindset shifts during sessions. We propose the STAR framework, which utilizes the time intervals between events within sessions to construct more informative representations for items and sessions. Our mechanism revises session representation by embedding time intervals without employing discretization. Empirical results on Yoochoose and Diginetica datasets show that the suggested method outperforms the state-of-the-art baseline models in Recall and MRR criteria.
translated by 谷歌翻译
下一篮子推荐考虑将一组项目推荐到用户将作为一个整体购买的下一个篮子。在本文中,我们为下一个篮子推荐开发了一种具有偏好,普及和转换(M2)的新颖混合模型。该方法在下一个篮子生成过程中模拟了三个重要因素:1)用户在项目中的“全球偏好”,2)项目的“全球受欢迎者和3”的过渡模式。与现有的基于内部网络的方法不同,M2不使用复杂的网络来模拟项目之间的转换,或为用户生成嵌入品。相反,它具有基于简单的编码器解码器的方法(ED-Trans),以更好地模拟项目之间的转换模式。我们将M2与不同组合的组合进行了比较,其中有5个现有的下一篮子推荐方法在4个公共基准数据集上推荐第一个,第二和第三篮子。我们的实验结果表明,M2显着优于所有任务中所有数据集的最先进的方法,提高了高达22.1%。此外,我们的消融研究表明,在推荐性能方面,ED-Trans比经常性神经网络更有效。我们还对下一个篮子推荐评估进行了彻底讨论了各种实验协议和评估指标。
translated by 谷歌翻译
对用户偏好的演变进行建模对于推荐系统至关重要。最近,已经研究并实现了基于图形的动态方法以供推荐使用,其中大多数侧重于用户稳定的长期偏好。但是,在实际情况下,用户的短期偏好会随着时间的流逝而动态发展。尽管存在试图捕获它的顺序方法,但是如何使用基于动态图的方法对短期偏好的演变进行建模尚未得到很好的认可。特别是:1)现有方法不会像顺序方法一样明确编码和捕获短期偏好的演变; 2)简单地使用最后几个交互不足以建模变化的趋势。在本文中,我们提出了连续时间顺序推荐(LSTSR)的长期短期偏好模型(LSTSR),以捕获动态图下短期偏好的演变。具体而言,我们明确编码短期优先偏好并通过内存机制进行优化,该内存机制具有三个关键操作:消息,汇总和更新。我们的内存机制不仅可以存储单跳信息,而且还可以通过在线新的交互触发。在五个公共数据集上进行的广泛实验表明,LSTSR始终优于各种线路上许多最先进的建议方法。
translated by 谷歌翻译
With information systems becoming larger scale, recommendation systems are a topic of growing interest in machine learning research and industry. Even though progress on improving model design has been rapid in research, we argue that many advances fail to translate into practice because of two limiting assumptions. First, most approaches focus on a transductive learning setting which cannot handle unseen users or items and second, many existing methods are developed for static settings that cannot incorporate new data as it becomes available. We argue that these are largely impractical assumptions on real-world platforms where new user interactions happen in real time. In this survey paper, we formalize both concepts and contextualize recommender systems work from the last six years. We then discuss why and how future work should move towards inductive learning and incremental updates for recommendation model design and evaluation. In addition, we present best practices and fundamental open challenges for future research.
translated by 谷歌翻译
受到计算机愿景和语言理解的深度学习的巨大成功的影响,建议的研究已经转移到发明基于神经网络的新推荐模型。近年来,我们在开发神经推荐模型方面目睹了显着进展,这概括和超越了传统的推荐模型,由于神经网络的强烈代表性。在本调查论文中,我们从建议建模与准确性目标的角度进行了系统审查,旨在总结该领域,促进研究人员和从业者在推荐系统上工作的研究人员和从业者。具体而具体基于推荐建模期间的数据使用,我们将工作划分为协作过滤和信息丰富的建议:1)协作滤波,其利用用户项目交互数据的关键来源; 2)内容丰富的建议,其另外利用与用户和项目相关的侧面信息,如用户配置文件和项目知识图; 3)时间/顺序推荐,其考虑与交互相关的上下文信息,例如时间,位置和过去的交互。在为每种类型审查代表性工作后,我们终于讨论了这一领域的一些有希望的方向。
translated by 谷歌翻译
与淘宝和亚马逊等大型平台不同,由于严重的数据分配波动(DDF)问题,在小规模推荐方案中开发CVR模型是更具挑战性的。 DDF防止现有的CVR模型自生效以来,因为1)需要几个月的数据需要足够小的场景训练CVR模型,导致培训和在线服务之间的相当大的分布差异; 2)电子商务促销对小型情景产生了更大的影响,导致即将到期的时间段的不确定性。在这项工作中,我们提出了一种名为MetacVR的新型CVR方法,从Meta学习的角度解决了DDF问题。首先,由特征表示网络(FRN)和输出层组成的基础CVR模型是精心设计和培训的,在几个月内与样品充分设计和培训。然后,我们将不同数据分布的时间段视为不同的场合,并使用相应的样本和预先训练的FRN获得每个场合的正面和负原型。随后,设计了距离度量网络(DMN)以计算每个样本和所有原型之间的距离度量,以便于减轻分布不确定性。最后,我们开发了一个集合预测网络(EPN),该网络(EPN)包含FRN和DMN的输出以进行最终的CVR预测。在这个阶段,我们冻结了FRN并用最近一段时间的样品训练DMN和EPN,因此有效地缓解了分布差异。据我们所知,这是在小规模推荐方案中针对DDF问题的CVR预测第一次研究。实验结果对现实世界数据集验证了我们的MetacVR和Online A / B测试的优越性也表明我们的模型在PCVR上实现了11.92%的令人印象深刻的收益和GMV的8.64%。
translated by 谷歌翻译
跨域建议可以帮助缓解传统的连续推荐系统中的数据稀疏问题。在本文中,我们提出了Recguru算法框架,以在顺序推荐中生成包含跨域的用户信息的广义用户表示,即使在两个域中的最小或没有公共用户时也是如此。我们提出了一种自我细心的AutoEncoder来导出潜在用户表示,以及域鉴别器,其旨在预测所产生的潜在表示的原点域。我们提出了一种新的逆势学习方法来训练两个模块,以使从不同域生成的用户嵌入到每个用户的单个全局Gur。学习的Gur捕获了用户的整体偏好和特征,因此可以用于增强行为数据并改进在涉及用户的任何单个域中的推荐。在两个公共交叉域推荐数据集以及从现实世界应用程序收集的大型数据集进行了广泛的实验。结果表明,Recguru提高了性能,优于各种最先进的顺序推荐和跨域推荐方法。收集的数据将被释放以促进未来的研究。
translated by 谷歌翻译
顺序推荐(SR)通过对用户在项目之间的过境方式进行建模来表征用户行为不断发展的模式。但是,简短的交互序列限制了现有SR的性能。为了解决这个问题,我们专注于本文中的跨域顺序推荐(CDSR),该建议旨在利用其他域中的信息来提高单个域的顺序建议性能。解决CDSR具有挑战性。一方面,如何保留单个领域的偏好以及整合跨域影响仍然是一个基本问题。另一方面,由于合并序列的长度有限,因此仅利用来自其他域的知识来完全解决数据稀疏问题。为了应对挑战,我们提出了DDGHM,这是CDSR问题的新型框架,其中包括两个主要模块,即双动态图形建模和混合度量训练。前者通过动态构造两级图,即局部图和全局图,捕获内域和域间顺序跃迁,并将它们与融合的细心门控机制结合在一起。后者通过采用混合度量学习来增强用户和项目表示形式,包括实现保持一致性和对比度度量的协作指标,以确保均匀性,以进一步减轻数据稀少性问题并提高预测准确性。我们在两个基准数据集上进行实验,结果证明了DDHMG的有效性。
translated by 谷歌翻译
Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect.In this work, we propose to integrate the user-item interactionsmore specifically the bipartite graph structure -into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the useritem graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in useritem graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec [40] and Collaborative Memory Network [5]. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/ xiangwang1223/neural_graph_collaborative_filtering. CCS CONCEPTS• Information systems → Recommender systems. * In the version published in ACM Digital Library, we find some small bugs; the bugs do not change the comparison results and the empirical findings. In this latest version, we update and correct the experimental results (i.e., the preprocessing of Yelp2018 dataset and the ndcg metric). All updates are highlighted in footnotes.
translated by 谷歌翻译
当前的利益点方法(POI)建议通过标准空间特征(例如POI坐标,社交网络等)来了解用户的偏好。这些模型忽略了空间移动性的关键方面 - 每个用户都承载他们的偏好无论他们走到哪里,智能手机。此外,随着隐私问题的越来越多,用户避免分享其确切的地理坐标及其社交媒体活动。在本文中,我们提出了Revamp,这是一种顺序POI推荐方法,该方法利用智能手机应用程序(或应用程序)上的用户活动来识别其移动性偏好。这项工作与最近对在线城市用户的心理学研究保持一致,这表明其空间行动行为在很大程度上受其智能手机应用程序的活动影响。此外,我们对粗粒智能手机数据的建议是指以隐私意识的方式收集的数据日志,即仅由(a)类别的智能手机应用程序和(b)类别的签到位置组成。因此,改装并不愿意精确地坐标,社交网络或要访问的特定应用程序。在自我注意模型的疗效的推动下,我们使用两种形式的位置编码(绝对和相对)学习了用户的POI偏好,每种位置编码是从A的签入动力学中提取的,在A的入住序列中提取用户。来自中国的两个大规模数据集进行的广泛实验表明,改革的预测能力及其预测应用程序和POI类别的能力。
translated by 谷歌翻译