本文考虑了$ k $ actions和$ d $ outcomes的部分监测问题,并提供了第一个最佳世界世界算法,其遗憾是在随机制度中的多层次,在随机状态下,在对抗性中近乎看法。政权。更具体地说,我们证明对于非分类本地可观察的游戏,随机制度中的遗憾是由$ o(k^3 m^2 \ log(t)\ log(k _ {\ pi} t) / \ delta _ {\ mathrm {\ min}})$,在$ o(k^{2/3} m \ sqrt {t \ log(t)\ log k _ {\ log k _ {\ pi}}})$中,在对抗状态下$ t $是回合的数量,$ m $是每个动作不同观察值的最大数量,$ \ delta _ {\ min} $是最小的最佳差距,$ k _ {\ pi} $是帕累托的最佳数量动作。此外,我们表明,对于非分类全球可观察的游戏,随机制度中的遗憾是由$ o(\ max \ {c _ {c _ {\ Mathcal {g}}}}^2 / k,\,c _ { }}} \} \ log(t)\ log(k _ {\ pi} t) / \ delta _ {\ min}^2)$,在$ o(\ max \ {c _ { }}}^2/k,\,c _ {\ mathcal {g}}} \} \ log(t)\ log(k _ {\ pi} t)))^{1/3} t} t^{2/3}) $,其中$ c _ {\ Mathcal {g}} $是游戏依赖的常数。我们的算法基于以下规范化领导者框架,该框架考虑了部分监视问题的性质,灵感来自在线学习领域中使用反馈图的算法。
translated by 谷歌翻译
本文考虑了多臂强盗(MAB)问题,并提供了一种新的最佳世界(BOBW)算法,该算法在随机和对抗性设置中几乎最佳地工作。在随机设置中,某些现有的BOBW算法获得了$ o的紧密依赖性遗憾界限(\ sum_ {i:\ delta_i> 0} \ frac {\ log t} {\ log t} {\ delta_i} {\ delta_i})手臂$ i $和时间范围$ t $。如Audibert等。 [2007]但是,在具有低变化的臂的随机环境中,可以改善性能。实际上,他们提供了一种随机mab算法,具有$ o的差距依赖性遗憾界限t)损失方差$ \ sigma_i^2 $ a臂$ i $。在本文中,我们提出了具有差距依赖性界限的第一个BOBW算法,表明即使在可能的对抗环境中,这些方差信息也可以使用。此外,我们的间隙变量依赖性结合中的领先常数因子仅是(几乎)下界值的两倍。此外,所提出的算法在对抗环境中享有多个与数据有关的遗憾界限,并且在具有对抗性腐败的随机设置中很好地工作。所提出的算法基于以下规范化的领导方法,并采用了自适应学习率,取决于损失的经验预测误差,这导致了差距变化依赖性的遗憾界限,反映了武器的方差。
translated by 谷歌翻译
This study considers online learning with general directed feedback graphs. For this problem, we present best-of-both-worlds algorithms that achieve nearly tight regret bounds for adversarial environments as well as poly-logarithmic regret bounds for stochastic environments. As Alon et al. [2015] have shown, tight regret bounds depend on the structure of the feedback graph: strongly observable graphs yield minimax regret of $\tilde{\Theta}( \alpha^{1/2} T^{1/2} )$, while weakly observable graphs induce minimax regret of $\tilde{\Theta}( \delta^{1/3} T^{2/3} )$, where $\alpha$ and $\delta$, respectively, represent the independence number of the graph and the domination number of a certain portion of the graph. Our proposed algorithm for strongly observable graphs has a regret bound of $\tilde{O}( \alpha^{1/2} T^{1/2} ) $ for adversarial environments, as well as of $ {O} ( \frac{\alpha (\ln T)^3 }{\Delta_{\min}} ) $ for stochastic environments, where $\Delta_{\min}$ expresses the minimum suboptimality gap. This result resolves an open question raised by Erez and Koren [2021]. We also provide an algorithm for weakly observable graphs that achieves a regret bound of $\tilde{O}( \delta^{1/3}T^{2/3} )$ for adversarial environments and poly-logarithmic regret for stochastic environments. The proposed algorithms are based on the follow-the-regularized-leader approach combined with newly designed update rules for learning rates.
translated by 谷歌翻译
我们提出了对Zimmert和Seldin [2020]算法的修改调整,用于对抗性的多型匪徒,并具有延迟的反馈,除了Zimmert和Seldin的最小值最佳对抗性遗憾保证外,还可以同时获得近乎遗憾的遗憾。有固定的延迟。具体而言,对抗性遗憾保证是$ \ Mathcal {o}(\ sqrt {tk} + \ sqrt {dt \ log k})$,其中$ t $是时间范围,$ k $是武器数量,并且$ d $是固定的延迟,而随机遗憾保证是$ \ Mathcal {o} \ left(\ sum_ {i \ neq i^*}(\ frac {1} {\ delta_i} \ log log(t) frac {d} {\ delta_ {i} \ log k}) + d k^{1/3} \ log k \ right)$,其中$ \ delta_i $是次优差距。我们还向任意延迟的情况提供了算法的扩展,该算法基于对最大延迟$ d_ {max} $的甲骨文知识,并获得$ \ mathcal {o}(\ sqrt {\ sqrt {tk} + \ sqrt { d \ log k} + d_ {max} k^{1/3} \ log k)$在对抗性方案中遗憾,其中$ d $是总延迟,$ \ mathcal {o} \ left(\ sum_ {\ sum_ { i \ neq i^*}(\ frac {1} {\ delta_i} \ log(t) + \ frac {\ sigma_ {max}}} {\ delta_ {i} {1/3} \ log k \ right)$在随机制度中遗憾,其中$ \ sigma_ {max} $是最大的杰出观测值。最后,我们提出了一个下限,与Zimmert和Seldin [2020]在对抗环境中的跳过技术所达到的遗憾上限相匹配。
translated by 谷歌翻译
Imperfect information games (IIG) are games in which each player only partially observes the current game state. We study how to learn $\epsilon$-optimal strategies in a zero-sum IIG through self-play with trajectory feedback. We give a problem-independent lower bound $\mathcal{O}(H(A_{\mathcal{X}}+B_{\mathcal{Y}})/\epsilon^2)$ on the required number of realizations to learn these strategies with high probability, where $H$ is the length of the game, $A_{\mathcal{X}}$ and $B_{\mathcal{Y}}$ are the total number of actions for the two players. We also propose two Follow the Regularize leader (FTRL) algorithms for this setting: Balanced-FTRL which matches this lower bound, but requires the knowledge of the information set structure beforehand to define the regularization; and Adaptive-FTRL which needs $\mathcal{O}(H^2(A_{\mathcal{X}}+B_{\mathcal{Y}})/\epsilon^2)$ plays without this requirement by progressively adapting the regularization to the observations.
translated by 谷歌翻译
最近有很多不可能的结果表明,在与对抗对手的马尔可夫游戏中最小化的遗憾在统计学上和计算上是棘手的。然而,这些结果都没有排除在所有各方采用相同学习程序的假设下,遗憾最小化的可能性。在这项工作中,我们介绍了第一种(据我们所知)在通用马尔可夫游戏中学习的算法,该算法在所有代理商执行时提供了sublinear后悔保证。我们获得的边界是为了置换遗憾,因此,在此过程中,意味着融合了相关的平衡。我们的算法是分散的,计算上有效的,并且不需要代理之间的任何通信。我们的主要观察结果是,在马尔可夫游戏中通过策略优化的在线学习基本上减少了一种加权遗憾的最小化形式,而未知权重由代理商的策略顺序的路径长度确定。因此,控制路径长度会导致加权的遗憾目标,以提供足够的适应性算法提供统一的后悔保证。
translated by 谷歌翻译
本文研究了用于多机构增强学习的政策优化算法。我们首先在全信息设置中提出了针对两人零和零和马尔可夫游戏的算法框架,其中每次迭代均使用一个策略更新,使用某个矩阵游戏算法在每个状态下进行策略更新,并带有一个带有特定的值更新步骤学习率。该框架统一了许多现有和新的政策优化算法。我们表明,只要矩阵游戏算法在每种状态下,该算法的州平均策略会收敛到游戏的近似NASH平衡(NE),只要矩阵游戏算法在每个状态下都具有低称重的遗憾价值更新。接下来,我们证明,该框架与每个状态(和平滑值更新)的乐观跟踪定制领导者(oftrl)算法可以找到$ \ Mathcal {\ widetilde {o}}(t^{ - 5 /6})$ t $迭代中的$近似NE,并且具有稍微修改的值更新规则的类似算法可实现更快的$ \ Mathcal {\ widetilde {o}}}}(t^{ - 1})$收敛率。这些改进了当前最佳$ \ Mathcal {\ widetilde {o}}}(t^{ - 1/2})$对称策略优化类型算法的速率。我们还将此算法扩展到多玩家通用-SUM Markov游戏,并显示$ \ MATHCAL {\ widetilde {o}}}(t^{ - 3/4})$收敛率与粗相关均衡(CCE)。最后,我们提供了一个数值示例来验证我们的理论并研究平滑价值更新的重要性,并发现使用“渴望”的价值更新(等同于独立的自然策略梯度算法)也可能会大大减慢收敛性,即使在$ h = 2 $层的简单游戏。
translated by 谷歌翻译
尽管固定环境中的单一机构政策优化最近在增强学习社区中引起了很多研究的关注,但是当在潜在竞争性的环境中有多个代理商在玩耍时,从理论上讲,少得多。我们通过提出和分析具有结构化但未知过渡的零和Markov游戏的新的虚拟游戏策略优化算法来向前迈进。我们考虑两类的过渡结构:分类的独立过渡和单个控制器过渡。对于这两种情况,我们都证明了紧密的$ \ widetilde {\ Mathcal {o}}(\ sqrt {k})$遗憾的范围在$ k $ eviepodes之后,在两种代理竞争的游戏场景中。每个代理人的遗憾是针对潜在的对抗对手的衡量,他们在观察完整的政策序列后可以在事后选择一个最佳政策。我们的算法在非平稳环境中同时进行政策优化的范围下,具有上置信度结合(UCB)的乐观和虚拟游戏的结合。当两个玩家都采用所提出的算法时,他们的总体最优差距为$ \ widetilde {\ Mathcal {o}}(\ sqrt {k})$。
translated by 谷歌翻译
我们研究了在偏见的可观察性模型下,在对抗性匪徒问题中的在线学习问题,称为政策反馈。在这个顺序决策问题中,学习者无法直接观察其奖励,而是看到由另一个未知策略并行运行的奖励(行为策略)。学习者必须在这种情况下面临另一个挑战:由于他们的控制之外的观察结果有限,学习者可能无法同样估算每个政策的价值。为了解决这个问题,我们提出了一系列算法,以保证任何比较者政策与行为政策之间的自然不匹配概念的范围,从而提高了对观察结果良好覆盖的比较者的绩效。我们还为对抗性线性上下文匪徒的设置提供了扩展,并通过一组实验验证理论保证。我们的关键算法想法是调整最近在非政策强化学习背景下流行的悲观奖励估计量的概念。
translated by 谷歌翻译
We study Pareto optimality in multi-objective multi-armed bandit by providing a formulation of adversarial multi-objective multi-armed bandit and properly defining its Pareto regrets that can be generalized to stochastic settings as well. The regrets do not rely on any scalarization functions and reflect Pareto optimality compared to scalarized regrets. We also present new algorithms assuming both with and without prior information of the multi-objective multi-armed bandit setting. The algorithms are shown optimal in adversarial settings and nearly optimal in stochastic settings simultaneously by our established upper bounds and lower bounds on Pareto regrets. Moreover, the lower bound analyses show that the new regrets are consistent with the existing Pareto regret for stochastic settings and extend an adversarial attack mechanism from bandit to the multi-objective one.
translated by 谷歌翻译
我们在非静止环境中调查在线凸优化,然后选择\ emph {动态后悔}作为性能测量,定义为在线算法产生的累积损失与任何可行比较器序列之间的差异。让$ t $是$ p_t $ be的路径长度,基本上反映了环境的非平稳性,最先进的动态遗憾是$ \ mathcal {o}(\ sqrt {t( 1 + p_t)})$。虽然这一界限被证明是凸函数最佳的最低限度,但在本文中,我们证明可以进一步提高一些简单的问题实例的保证,特别是当在线功能平滑时。具体而言,我们提出了新的在线算法,可以利用平滑度并替换动态遗憾的$ t $替换依据\ {问题依赖性}数量:损耗函数梯度的变化,比较器序列的累积损失,以及比较器序列的累积损失最低术语的最低限度。这些数量是大多数$ \ mathcal {o}(t)$,良性环境中可能更小。因此,我们的结果适应了问题的内在难度,因为边界比现有结果更严格,以便在最坏的情况下保证相同的速率。值得注意的是,我们的算法只需要\ emph {一个}渐变,这与开发的方法共享相同的渐变查询复杂性,以优化静态遗憾。作为进一步的应用,我们将来自全信息设置的结果扩展到具有两点反馈的强盗凸优化,从而达到此类强盗任务的第一个相关的动态遗憾。
translated by 谷歌翻译
我们研究了随机线性匪徒(LB)中的两个模型选择设置。在我们将其称为特征选择的第一个设置中,LB问题的预期奖励是$ M $特征映射(模型)中至少一个的线性跨度。在第二个设置中,LB问题的奖励参数由$ \ MATHBB r ^ d $中表示(可能)重叠球的$ M $模型任意选择。但是,该代理只能访问错过模型,即球的中心和半径的估计。我们将此设置称为参数选择。对于每个设置,我们开发和分析一种基于从匪徒减少到全信息问题的算法。这允许我们获得遗憾的界限(最多超过$ \ sqrt {\ log m} $ factor)而不是已知真实模型的情况。我们参数选择算法的遗憾也以模型不确定性对数进行缩放。最后,我们经验展现了使用合成和现实世界实验的算法的有效性。
translated by 谷歌翻译
我们研究了一个顺序决策问题,其中学习者面临$ k $武装的随机匪徒任务的顺序。对手可能会设计任务,但是对手受到限制,以在$ m $ and的较小(但未知)子集中选择每个任务的最佳组。任务边界可能是已知的(强盗元学习设置)或未知(非平稳的强盗设置)。我们设计了一种基于Burnit subsodular最大化的减少的算法,并表明,在大量任务和少数最佳武器的制度中,它在两种情况下的遗憾都比$ \ tilde {o}的简单基线要小。 \ sqrt {knt})$可以通过使用为非平稳匪徒问题设计的标准算法获得。对于固定任务长度$ \ tau $的强盗元学习问题,我们证明该算法的遗憾被限制为$ \ tilde {o}(nm \ sqrt {m \ tau}+n^{2/3} m \ tau)$。在每个任务中最佳武器的可识别性的其他假设下,我们显示了一个带有改进的$ \ tilde {o}(n \ sqrt {m \ tau}+n^{1/2} {1/2} \ sqrt的强盗元学习算法{m k \ tau})$遗憾。
translated by 谷歌翻译
通过图形反馈的在线学习问题已经在文献中进行了广泛的研究,因为它的一般性和对各种学习任务进行建模的潜力。现有作品主要研究对抗和随机反馈。如果对反馈机制的先验知识是不可用的或错误的,那么这种专门设计的算法可能会遭受巨大的损失。为了避免此问题,\ citet {ererez2021towards}尝试针对两个环境进行优化。但是,他们认为反馈图是无方向性的,每个顶点都有一个自循环,这会损害框架的通用性,并且在应用程序中可能无法满足。有了一般的反馈图,在拉动该手臂时可能无法观察到手臂,这使得探索更加昂贵,并且在两种环境中最佳性能的算法更具挑战性。在这项工作中,我们通过新的权衡机制克服了这一困难,并精心设计的探索和剥削比例。我们证明了所提出的算法同时实现$ \ mathrm {poly} \ log t $在随机设置中的遗憾,而在$ versarial设置中,$ \ tilde {o} $ \ tilde {o}的最小值遗憾t $是地平线,$ \ tilde {o} $隐藏参数独立于$ t $以及对数项。据我们所知,这是通用反馈图的第一个最佳世界结果。
translated by 谷歌翻译
我们研究了一种强化学习理论(RL),其中学习者在情节结束时仅收到一次二进制反馈。尽管这是理论上的极端测试案例,但它也可以说是实际应用程序的代表性,而不是在RL实践中,学习者在每个时间步骤中都会收到反馈。的确,在许多实际应用的应用程序中,例如自动驾驶汽车和机器人技术,更容易评估学习者的完整轨迹要么是“好”还是“坏”,但是更难在每个方面提供奖励信号步。为了证明在这种更具挑战性的环境中学习是可能的,我们研究了轨迹标签由未知参数模型生成的情况,并提供了一种统计和计算上有效的算法,从而实现了sublinear遗憾。
translated by 谷歌翻译
我们开发了一种使用无遗憾的游戏动态解决凸面优化问题的算法框架。通过转换最小化凸起函数以顺序方式解决Min-Max游戏的辅助问题的问题,我们可以考虑一系列必须在另一个之后选择其行动的两名员工的一系列策略。这些策略的常见选择是所谓的无悔的学习算法,我们描述了许多此类并证明了遗憾。然后,我们表明许多凸面优化的经典一阶方法 - 包括平均迭代梯度下降,弗兰克 - 沃尔夫算法,重球算法和Nesterov的加速方法 - 可以被解释为我们框架的特殊情况由于每个玩家都做出正确选择无悔的策略。证明该框架中的收敛速率变得非常简单,因为它们遵循适当已知的遗憾范围。我们的框架还引发了一些凸优化的特殊情况的许多新的一阶方法。
translated by 谷歌翻译
我们开发了一个修改的在线镜下降框架,该框架适用于在无界域中构建自适应和无参数的算法。我们利用这项技术来开发第一个不受限制的在线线性优化算法,从而达到了最佳的动态遗憾,我们进一步证明,基于以下规范化领导者的自然策略无法取得相似的结果。我们还将镜像下降框架应用于构建新的无参数隐式更新,以及简化和改进的无限规模算法。
translated by 谷歌翻译
当学习者与其他优化代理进行连续游戏时,我们研究了遗憾最小化的问题:在这种情况下,如果所有玩家都遵循一种无重组算法,则相对于完全对手环境,可能会达到较低的遗憾。我们在变异稳定的游戏(包括所有凸孔和单调游戏的连续游戏)的背景下研究了这个问题,当玩家只能访问其个人回报梯度时。如果噪音是加性的,那么游戏理论和纯粹的对抗性设置也会获得类似的遗憾保证。但是,如果噪声是乘法的,我们表明学习者实际上可以持续遗憾。我们通过学习速率分离的乐观梯度方案实现了更快的速度 - 也就是说,该方法的外推和更新步骤被调整为不同的时间表,具体取决于噪声配置文件。随后,为了消除对精致的超参数调整的需求,我们提出了一种完全自适应的方法,可以在最坏的和最佳案例的遗憾保证之间平稳地插入。
translated by 谷歌翻译
在线学习和决策中的一个核心问题 - 从土匪到强化学习 - 是要了解哪种建模假设会导致样本有效的学习保证。我们考虑了一个普遍的对抗性决策框架,该框架涵盖了(结构化的)匪徒问题,这些问题与对抗性动力学有关。我们的主要结果是通过新的上限和下限显示决策估计系数,这是Foster等人引入的复杂度度量。在与我们环境的随机对应物中,对于对抗性决策而言是必要和足够的遗憾。但是,与随机设置相比,必须将决策估计系数应用于所考虑的模型类(或假设)的凸壳。这就确定了容纳对抗奖励或动态的价格受凸层化模型类的行为的约束,并恢复了许多现有结果 - 既积极又负面。在获得这些保证的途径中,我们提供了新的结构结果,将决策估计系数与其他众所周知的复杂性度量的变体联系起来,包括Russo和Van Roy的信息比以及Lattimore和Gy的探索目标\“ {o} rgy。
translated by 谷歌翻译
我们研究了带有切换成本的土匪的最佳世界世界算法,最近由Rouyer,Seldin和Cesa-Bianchi提出,2021年。我们引入了一种令人惊讶的简单有效的算法}(t^{2/3})$在遗忘的对抗设置中,$ \ mathcal {o}(\ min \ {\ log(t)/\ delta^2,T^{2/3} \ \})$在随机约束的制度中,均具有(单位)切换成本,其中$ \ delta $是武器之间的差距。在随机限制的情况下,由于Rouyer等人,我们的界限比以前的结果得到了改善,这使$ \ Mathcal {o}(t^{1/3}/\ delta)$。我们伴随我们的结果,下限表明,通常,$ \ tilde {\ omega}(\ min \ {1/\ delta^2,t^{2/3} \})$遗憾是不可避免的。 - 具有$ \ mathcal {o}(t^{2/3})$ wort-case遗憾的算法的算法。
translated by 谷歌翻译