贝叶斯改进的姓氏地理编码(BISG)是在不包含它的选民注册文件中代表种族/民族的最流行方法。本文使用来自加利福尼亚州,佛罗里达州,北卡罗来纳州和佐治亚州的自我报告的种族/民族的选民档案,对一系列未经测试的机器学习替代方案进行了基准测试。该分析得出三个关键发现。首先,当给出完全相同的输入时,BISG和机器学习在估计种族/种族组成方面的表现相似。其次,机器学习在种族/种族分类方面的表现优于BISG。第三,所有方法的性能在各州之间有很大的变化。这些结果表明,预训练的机器学习模型比BISG更可取,以进行单个分类。此外,在区域层面和各州之间的混合结果强调了研究人员在凭经验中验证其感兴趣人群中所选择的种族/种族代理的需求。
translated by 谷歌翻译
我们提供了最大的公开词典,其中包括贝叶斯改进的姓氏地理编码(BISG),以归纳种族和种族的目的。词典基于六个南部州的选民档案,这些档案是在选民注册后收集自我报告的种族数据的。我们的数据涵盖了比任何可比数据集更大的名称范围,其中包含大约100万个名字,110万个中间名和140万个姓氏。个人被归类为五个相互排斥的种族和种族 - 白人,黑人,西班牙裔,亚洲和其他种族 - 每个词典中的每个名称都为种族/种族计数提供了名称。然后可以按列表或列的标准化计数,以获取给定名称或名称的种族的条件概率。然后可以将这些条件概率部署在数据分析任务中,以实现真相和种族数据的基础分析任务。
translated by 谷歌翻译
个人种族和种族的预测在种族差异研究中起着重要作用。贝叶斯改进的姓氏地理编码(BISG)依赖于详细的人口普查信息,已成为该预测任务的主要方法。不幸的是,BISG遭受了两个数据问题。首先,人口普查通常在这些组成员居住的位置的少数群体中含量为零。其次,人口普查数据中缺少许多姓氏 - 尤其是少数民族的姓氏。我们引入了完全贝叶斯改进的姓氏地理编码(FBISG)方法,该方法可以通过扩展BISG方法的天真贝叶斯推断来解决人口普查测量误差。我们还使用了从六个有自我报告的种族的南部州的选民文件中获取的最后,第一个和中间名的其他数据。我们的经验验证表明,FBISG方法论和名称补充剂可显着提高种族归纳的准确性,尤其是对于少数民族而言。
translated by 谷歌翻译
目的:我们研究使用机器学习(ML)模型的可解释的累入预测,并在预测能力,稀疏性和公平性方面分析性能。与以前的作品不同,本研究列举了输出概率而不是二进制预测的可解释模型,并使用定量公平定义来评估模型。本研究还研究了模型是否可以横跨地理位置概括。方法:我们在佛罗里达州和肯塔基州的两个不同的刑事核查数据集上生成了黑盒和可解释的ML模型。我们将这些模型的预测性能和公平与目前用于司法系统中使用的两种方法进行了比较,以预测审前常规率:Arnold PSA和Compas。我们评估了所有模型的预测性能,可以在两次跨越两次预测六种不同类型犯罪的模型。结果:几种可解释的ML模型可以预测常规和黑盒ML模型,比Compas或Arnold PSA更准确。这些模型在实践中可能有用。类似于Arnold PSA,这些可解释模型中的一些可以作为一个简单的表格写入。其他可以使用一组可视化显示。我们的地理分析表明ML模型应分开培训,以便单独的位置并随时间更新。我们还为可​​解释模型提供了公平分析。结论:可解释的机器学习模型可以在预测准确性和公平性方面表现,也可以表现,也可以表现,也可以执行不可解释的方法和目前使用的风险评估尺度。机器学习模型对于单独培训,可以更准确地进行不同的位置,并保持最新。
translated by 谷歌翻译
我们建议并探讨可以将语言模型作为社会科学研究中特定人类亚人群的有效代理进行研究的可能性。人工智能工具的实践和研究应用有时受到有问题的偏见(例如种族主义或性别歧视)的限制,这些偏见通常被视为模型的统一特性。我们表明,一个这样的工具中的“算法偏见”(GPT-3语言模型)既是细粒度又是人口统计相关的,这意味着适当的条件会导致其准确地仿真来自各种人类的响应分布亚组。我们将此属性称为“算法忠诚度”,并在GPT-3中探索其范围。我们通过将模型调节在美国进行的多项大型调查中的数千个社会人口统计背景故事中调节,从而创建“硅样本”。然后,我们比较硅和人类样品,以证明GPT-3中包含的信息远远超出了表面相似性。它是细微的,多方面的,并反映了特征人类态度的思想,态度和社会文化背景之间的复杂相互作用。我们建议,具有足够算法的忠诚度的语言模型构成了一种新颖而有力的工具,可以促进各种学科的人类和社会的理解。
translated by 谷歌翻译
Objectives: Discussions of fairness in criminal justice risk assessments typically lack conceptual precision. Rhetoric too often substitutes for careful analysis. In this paper, we seek to clarify the tradeoffs between different kinds of fairness and between fairness and accuracy.Methods: We draw on the existing literatures in criminology, computer science and statistics to provide an integrated examination of fairness and accuracy in criminal justice risk assessments. We also provide an empirical illustration using data from arraignments.Results: We show that there are at least six kinds of fairness, some of which are incompatible with one another and with accuracy.Conclusions: Except in trivial cases, it is impossible to maximize accuracy and fairness at the same time, and impossible simultaneously to satisfy all kinds of fairness. In practice, a major complication is different base rates across different legally protected groups. There is a need to consider challenging tradeoffs.
translated by 谷歌翻译
最近,在气象学中使用机器学习大大增加了。尽管许多机器学习方法并不是什么新鲜事物,但有关机器学习的大学课程在很大程度上是气象学专业的学生,​​不需要成为气象学家。缺乏正式的教学导致人们认为机器学习方法是“黑匣子”,因此最终用户不愿在每天的工作流程中应用机器学习方法。为了减少机器学习方法的不透明性,并降低了对气象学中机器学习的犹豫,本文对一些最常见的机器学习方法进行了调查。一个熟悉的气象示例用于将机器学习方法背景化,同时还使用普通语言讨论机器学习主题。证明了以下机器学习方法:线性回归;逻辑回归;决策树;随机森林;梯度增强了决策树;天真的贝叶斯;并支持向量机。除了讨论不同的方法外,本文还包含有关通用机器学习过程的讨论以及最佳实践,以使读者能够将机器学习应用于自己的数据集。此外,所有代码(以Jupyter笔记本电脑和Google Colaboratory Notebooks的形式)用于在论文中进行示例,以促进气象学中的机器学习使用。
translated by 谷歌翻译
Colleges and universities use predictive analytics in a variety of ways to increase student success rates. Despite the potential for predictive analytics, two major barriers exist to their adoption in higher education: (a) the lack of democratization in deployment, and (b) the potential to exacerbate inequalities. Education researchers and policymakers encounter numerous challenges in deploying predictive modeling in practice. These challenges present in different steps of modeling including data preparation, model development, and evaluation. Nevertheless, each of these steps can introduce additional bias to the system if not appropriately performed. Most large-scale and nationally representative education data sets suffer from a significant number of incomplete responses from the research participants. While many education-related studies addressed the challenges of missing data, little is known about the impact of handling missing values on the fairness of predictive outcomes in practice. In this paper, we set out to first assess the disparities in predictive modeling outcomes for college-student success, then investigate the impact of imputation techniques on the model performance and fairness using a commonly used set of metrics. We conduct a prospective evaluation to provide a less biased estimation of future performance and fairness than an evaluation of historical data. Our comprehensive analysis of a real large-scale education dataset reveals key insights on modeling disparities and how imputation techniques impact the fairness of the student-success predictive outcome under different testing scenarios. Our results indicate that imputation introduces bias if the testing set follows the historical distribution. However, if the injustice in society is addressed and consequently the upcoming batch of observations is equalized, the model would be less biased.
translated by 谷歌翻译
软件偏见是软件工程师越来越重要的操作问题。我们提出了17种代表性缓解方法的大规模,全面的经验评估,该方法通过1​​2个机器学习(ML)绩效指标,4项公平度量指标和24种类型的公平性 - 性能权衡评估,应用于8种广泛采用的公平性折衷评估基准软件决策/预测任务。与以前在此重要的操作软件特征上的工作相比,经验覆盖范围是全面的,涵盖了最多的偏见缓解方法,评估指标和公平性的绩效权衡措施。我们发现(1)偏置缓解方法大大降低了所有ML性能指标(包括先前工作中未考虑的指标)所报告的值,在很大一部分的情况下(根据不同的ML性能指标为42%〜75%) ; (2)在所有情况和指标中,偏置缓解方法仅在约50%的情况下获得公平性改善(根据用于评估偏见/公平性的指标,介于29%〜59%之间); (3)缓解偏见的方法的表现不佳,甚至导致37%的情况下的公平性和ML性能下降; (4)缓解偏差方法的有效性取决于任务,模型,公平性和ML性能指标,并且没有证明对所有研究的情况有效的“银弹”缓解方法。在仅29%的方案中,我们发现优于其他方法的最佳缓解方法。我们已公开提供本研究中使用的脚本和数据,以便将来复制和扩展我们的工作。
translated by 谷歌翻译
已经重新强调,使用AI用于临床决策可以放大健康差异。机器学习模型可以拾取患者的种族特性和临床结果之间的不希望的相关性。这种相关性通常存在于用于模型开发的(历史)数据中。疾病检测模型中报告偏差有所增加。除了来自所营业的人群的数据的稀缺之外,还讨论了如何编码这些偏差以及如何减少甚至去除不同性能的少数人。担心算法可以识别患者特征,例如生物学性别或种族身份,然后在进行预测时直接或间接地使用这些信息。但它仍然尚不清楚我们如何建立这些信息是否实际使用。本文旨在通过探索这些问题,探索这些问题,探讨了对机器学习模型的内部工作进行了直观的基于图像的疾病的疾病的方法。我们还调查如何解决性能差异并找到自动阈值选择,以实现有效且有问题的技术,导致模型具有跨子组的具有可比真实和误频率的模型。我们的调查结果要求进一步研究,以更好地了解性能差异的根本原因。
translated by 谷歌翻译
专利数据提供有关技术发明的丰富信息,但没有披露发明人的族裔血统。在本文中,我使用监督学习技术来推断出这些信息。为此,我构建了95'202标记名称的数据集,并用长短期记忆(LSTM)培训一个人工复发性神经网络,以基于名称预测种族起源。训练有素的网络在17种族起源中实现了91%的整体性能。我使用此模型来分类和调查群体的群体,并提供关于其种族原产地组成的新型描述性证据,以及各种国家和技术领域。在过去的几十年中,全球民族原产地组成变得更加多样化,这主要是由于亚洲原产人的相对增加。此外,美国外国发明人的流行率在美国特别高,但在其他高收入经济体中也增加。这一增长主要是由非西方发明人流入美国的新兴高科技领域,但不是其他高收入国家。
translated by 谷歌翻译
用于预测和预测的机器学习(ML)方法已在定量科学中广泛存在。但是,基于ML的科学中有许多已知的方法论陷阱,包括数据泄漏。在本文中,我们系统地研究了基于ML的科学中的可重复性问题。我们表明,数据泄漏确实是一个普遍的问题,并导致了严重的可重复性失败。具体而言,通过对采用ML方法的研究社区中的文献调查,我们发现了17个领域,发现了错误,共同影响了329篇论文,在某些情况下导致了极其解放的结论。根据我们的调查,我们提出了8种泄漏类型的细粒分类法,范围从教科书错误到打开研究问题。我们主张基于ML的科学的基本方法论变化,因此可以在发布前捕获泄漏病例。为此,我们提出了模型信息表,以根据ML模型报告科学主张,以解决我们调查中确定的所有类型的泄漏。为了研究可重复性错误的影响和模型信息表的功效,我们在一个复杂的ML模型被认为比较旧的统计模型(例如逻辑回归(LR):内战预测)的领域进行了可重复性研究。我们发现,与LR模型相比,所有声称复杂ML模型具有出色性能的论文由于数据泄漏而无法再现,并且复杂的ML模型的性能并不比数十年历史的LR模型更好。尽管这些错误都无法通过阅读论文来捕获,但模型信息表将在每种情况下都能检测到泄漏。
translated by 谷歌翻译
机器学习(ML)越来越多地用于支持高风险的决策,这是由于其相对于人类评估的优势预测能力的承诺而欠的趋势。但是,决策目标与观察到的作为训练ML模型的标签的结果中捕获的内容之间经常存在差距。结果,机器学习模型可能无法捕获决策标准的重要维度,从而阻碍了他们的决策支持。在这项工作中,我们探讨了历史专家决策作为组织信息系统中通常可用的丰富(但不完美)的信息来源,并表明它可以利用它来弥合决策目标与算法目标之间的差距。当数据中的每个案例都由单个专家评估并提出基于影响函数的方法作为解决此问题的解决方案时,我们会间接考虑估计专家一致性的问题。然后,我们将估计的专家一致性通过培训时间标签合并方法纳入预测模型。这种方法使ML模型可以在有推断的专家一致性和观察标签的情况下向专家学习。我们还提出了通过混合和延期模型来利用推断一致性的替代方法。在我们的经验评估中,专注于儿童虐待热线筛查的背景下,我们表明(1)有一些高风险案例,其风险是专家考虑的,但在目标标签中没有完全捕获用于培训已部署模型和培训的目标标签(2)提出的方法可显着提高这些情况的精度。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
Machine learning can impact people with legal or ethical consequences when it is used to automate decisions in areas such as insurance, lending, hiring, and predictive policing. In many of these scenarios, previous decisions have been made that are unfairly biased against certain subpopulations, for example those of a particular race, gender, or sexual orientation. Since this past data may be biased, machine learning predictors must account for this to avoid perpetuating or creating discriminatory practices. In this paper, we develop a framework for modeling fairness using tools from causal inference. Our definition of counterfactual fairness captures the intuition that a decision is fair towards an individual if it is the same in (a) the actual world and (b) a counterfactual world where the individual belonged to a different demographic group. We demonstrate our framework on a real-world problem of fair prediction of success in law school. * Equal contribution. This work was done while JL was a Research Fellow at the Alan Turing Institute. 2 https://obamawhitehouse.archives.gov/blog/2016/05/04/big-risks-big-opportunities-intersection-big-dataand-civil-rights 31st Conference on Neural Information Processing Systems (NIPS 2017),
translated by 谷歌翻译
A significant level of stigma and inequality exists in mental healthcare, especially in under-served populations, which spreads through collected data. When not properly accounted for, machine learning (ML) models learned from data can reinforce the structural biases already present in society. Here, we present a systematic study of bias in ML models designed to predict depression in four different case studies covering different countries and populations. We find that standard ML approaches show regularly biased behaviors. However, we show that standard mitigation techniques, and our own post-hoc method, can be effective in reducing the level of unfair bias. We provide practical recommendations to develop ML models for depression risk prediction with increased fairness and trust in the real world. No single best ML model for depression prediction provides equality of outcomes. This emphasizes the importance of analyzing fairness during model selection and transparent reporting about the impact of debiasing interventions.
translated by 谷歌翻译
公平性是确保机器学习(ML)预测系统不会歧视特定个人或整个子人群(尤其是少数族裔)的重要要求。鉴于观察公平概念的固有主观性,文献中已经引入了几种公平概念。本文是一项调查,说明了通过大量示例和场景之间的公平概念之间的微妙之处。此外,与文献中的其他调查不同,它解决了以下问题:哪种公平概念最适合给定的现实世界情景,为什么?我们试图回答这个问题的尝试包括(1)确定手头现实世界情景的一组与公平相关的特征,(2)分析每个公平概念的行为,然后(3)适合这两个元素以推荐每个特定设置中最合适的公平概念。结果总结在决策图中可以由从业者和政策制定者使用,以导航相对较大的ML目录。
translated by 谷歌翻译
Building an accurate model of travel behaviour based on individuals' characteristics and built environment attributes is of importance for policy-making and transportation planning. Recent experiments with big data and Machine Learning (ML) algorithms toward a better travel behaviour analysis have mainly overlooked socially disadvantaged groups. Accordingly, in this study, we explore the travel behaviour responses of low-income individuals to transit investments in the Greater Toronto and Hamilton Area, Canada, using statistical and ML models. We first investigate how the model choice affects the prediction of transit use by the low-income group. This step includes comparing the predictive performance of traditional and ML algorithms and then evaluating a transit investment policy by contrasting the predicted activities and the spatial distribution of transit trips generated by vulnerable households after improving accessibility. We also empirically investigate the proposed transit investment by each algorithm and compare it with the city of Brampton's future transportation plan. While, unsurprisingly, the ML algorithms outperform classical models, there are still doubts about using them due to interpretability concerns. Hence, we adopt recent local and global model-agnostic interpretation tools to interpret how the model arrives at its predictions. Our findings reveal the great potential of ML algorithms for enhanced travel behaviour predictions for low-income strata without considerably sacrificing interpretability.
translated by 谷歌翻译
随着数据驱动的系统越来越大规模部署,对历史上边缘化的群体的不公平和歧视结果引起了道德问题,这些群体在培训数据中的代表性不足。作为回应,围绕AI的公平和包容性的工作呼吁代表各个人口组的数据集。在本文中,我们对可访问性数据集中的年龄,性别和种族和种族的代表性进行了分析 - 数据集 - 来自拥有的数据集,这些数据集来自拥有的人。残疾和老年人 - 这可能在减轻包含AI注入的应用程序的偏见方面发挥重要作用。我们通过审查190个数据集的公开信息来检查由残疾人来源的数据集中的当前表示状态,我们称这些可访问性数据集为止。我们发现可访问性数据集代表不同的年龄,但具有性别和种族表示差距。此外,我们研究了人口统计学变量的敏感和复杂性质如何使分类变得困难和不一致(例如,性别,种族和种族),标记的来源通常未知。通过反思当前代表残疾数据贡献者的挑战和机会,我们希望我们的努力扩大了更多可能将边缘化社区纳入AI注入系统的可能性。
translated by 谷歌翻译
算法决策的兴起催生了许多关于公平机器学习(ML)的研究。金融机构使用ML来建立支持一系列与信贷有关的决定的风险记分卡。然而,关于信用评分的公平ML的文献很少。该论文做出了三项贡献。首先,我们重新审视统计公平标准,并检查其对信用评分的适当性。其次,我们对将公平目标纳入ML模型开发管道中的算法选项进行了分类。最后,我们从经验上比较了使用现实世界数据以利润为导向的信用评分上下文中的不同公平处理器。经验结果证实了对公平措施的评估,确定了实施公平信用评分的合适选择,并阐明了贷款决策中的利润权衡。我们发现,可以立即达到多个公平标准,并建议分离作为衡量记分卡的公平性的适当标准。我们还发现公平的过程中,可以在利润和公平之间实现良好的平衡,并表明算法歧视可以以相对较低的成本降低到合理的水平。与该论文相对应的代码可在GitHub上获得。
translated by 谷歌翻译