大多数流行的大数据分析工具都会发展为改编其工作环境,以从大量非结构化数据中提取有价值的信息。数据挖掘技术从大数据中过滤这些有用信息的能力导致了大数据挖掘一词。将数据范围从小型,结构化和稳定的数据转移到庞大的量,非结构化和快速变化的数据带来了许多数据管理挑战。由于建筑限制,不同的工具以自己的方式应对这些挑战。根据手头任务选择正确的数据管理框架时,有许多参数需要考虑。在本文中,我们为两种广泛使用的大数据分析工具(即Apache Spark和Hadoop MapReduce)提供了一个综合基准,即共同的数据挖掘任务,即分类。我们采用多个评估指标来比较基准框架的性能,例如执行时间,准确性和可扩展性。这些指标专门用于衡量分类任务的性能。据我们所知,文献中先前没有研究所有这些指标,同时考虑到特定于任务的问题。我们证明,在训练模型上,Spark的速度比MapReduce快5倍。然而,当输入工作负载较大时,火花降解的性能。通过其他簇扩展环境可以显着提高火花的性能。但是,在Hadoop中未观察到类似的增强。 MAPREDUCE的机器学习实用程序往往比Spark的精度得分更好,例如3%,即使在小型数据集中也是如此。
translated by 谷歌翻译
通过分析大量数据来提供决策支持,大数据正在改革许多工业域。大数据测试旨在确保大数据系统在维护数据的性能和质量时运行平稳且无错误。但是,由于数据的多样性和复杂性,测试大数据具有挑战性。虽然众多研究对大数据测试进行了综合审查,但解决了测试技术和挑战的综合性尚未混淆。因此,我们对大数据测试技术(2010年 - 2021年)进行了系统审查。本文通过突出显示每个处理阶段的技术来讨论测试数据的处理。此外,我们讨论了挑战和未来的方向。我们的发现表明,已经使用不同的功能,非功能性和组合(功能和非功能性)测试技术来解决与大数据相关的特定问题。同时,在MapReduce验证阶段,大多数测试挑战都面临。此外,组合测试技术是与其他技术相结合的应用技术之一(即随机测试,突变测试,输入空间分区和等价测试),以解决在大数据测试期间面临的各种功能故障挑战。
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
比较不同的汽车框架是具有挑战性的,并且经常做错了。我们引入了一个开放且可扩展的基准测试,该基准遵循最佳实践,并在比较自动框架时避免常见错误。我们对71个分类和33项回归任务进行了9个著名的自动框架进行了详尽的比较。通过多面分析,评估模型的准确性,与推理时间的权衡以及框架失败,探索了自动框架之间的差异。我们还使用Bradley-terry树来发现相对自动框架排名不同的任务子集。基准配备了一个开源工具,该工具与许多自动框架集成并自动化经验评估过程端到端:从框架安装和资源分配到深入评估。基准测试使用公共数据集,可以轻松地使用其他Automl框架和任务扩展,并且具有最新结果的网站。
translated by 谷歌翻译
上下文:大数据的有效处理是SQL和NOSQL数据库的一项具有挑战性的任务,在这种数据库中,有效的软件体系结构起着至关重要的作用。 SQL数据库设计用于构建数据和支持垂直可扩展性。相反,水平可伸缩性由NOSQL数据库支持,并且可以有效地处理较大的非结构化数据。可以根据组织的需求选择正确的范式;但是,做出正确的选择通常可能具有挑战性。 SQL和NOSQL数据库遵循不同的体系结构。同样,混合模型之后是NOSQL数据库的每个类别。因此,对于多个云服务提供商(CSP)的云消费者来说,数据移动变得困难。此外,每个云平台IAAS,PAAS,SaaS和DBAAS还监视各种范式。目的:该系统文献综述(SLR)旨在研究与SQL和NOSQL数据库软件体系结构相关的相关文章,并解决各种云平台之间的数据可移植性和互操作性。最新的状态通过观察缩放,性能,可用性,一致性和分片特性,介绍了SQL和NOSQL数据库的许多性能比较研究。根据研究研究,NOSQL数据库设计的结构可以是大数据分析的正确选择,而SQL数据库适合OLTP数据库。研究人员提出了许多与云中数据流动相关的方法。开发了基于平台的API,这使用户的数据移动变得困难。因此,在跨多个CSP的数据移动期间发现了数据可移植性和互操作性问题。为了最大程度地减少开发人员的努力和互操作性,要求统一的API使数据移动在各种云平台之间相对易于访问。
translated by 谷歌翻译
As the interest to Graph Neural Networks (GNNs) is growing, the importance of benchmarking and performance characterization studies of GNNs is increasing. So far, we have seen many studies that investigate and present the performance and computational efficiency of GNNs. However, the work done so far has been carried out using a few high-level GNN frameworks. Although these frameworks provide ease of use, they contain too many dependencies to other existing libraries. The layers of implementation details and the dependencies complicate the performance analysis of GNN models that are built on top of these frameworks, especially while using architectural simulators. Furthermore, different approaches on GNN computation are generally overlooked in prior characterization studies, and merely one of the common computational models is evaluated. Based on these shortcomings and needs that we observed, we developed a benchmark suite that is framework independent, supporting versatile computational models, easily configurable and can be used with architectural simulators without additional effort. Our benchmark suite, which we call gSuite, makes use of only hardware vendor's libraries and therefore it is independent of any other frameworks. gSuite enables performing detailed performance characterization studies on GNN Inference using both contemporary GPU profilers and architectural GPU simulators. To illustrate the benefits of our new benchmark suite, we perform a detailed characterization study with a set of well-known GNN models with various datasets; running gSuite both on a real GPU card and a timing-detailed GPU simulator. We also implicate the effect of computational models on performance. We use several evaluation metrics to rigorously measure the performance of GNN computation.
translated by 谷歌翻译
TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. Tensor-Flow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, generalpurpose GPUs, and custom-designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous "parameter server" designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with a focus on training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model and demonstrate the compelling performance that Tensor-Flow achieves for several real-world applications.
translated by 谷歌翻译
如今,随着数字银行业务已成为常态,信用卡的使用已变得很普遍。随着这一增加,信用卡中的欺诈也对银行和客户都有一个巨大的问题和损失。正常的欺诈检测系统无法检测欺诈,因为欺诈者使用新技术出现欺诈。这创造了使用基于机器学习的软件来检测欺诈的需求。当前,可用的机器学习软件仅着眼于检测欺诈的准确性,但不关注检测的成本或时间因素。这项研究重点是银行信用卡欺诈检测系统的机器学习可伸缩性。我们已经比较了新提出的技术可用的现有机器学习算法和方法。目的是证明,使用较少的位训练机器学习算法将导致更可扩展的系统,这将减少时间,并且实施成本也较低。
translated by 谷歌翻译
通常,机器学习应用程序必须应对动态环境,其中数据以潜在无限长度和瞬态行为的连续数据流的形式收集。与传统(批量)数据挖掘相比,流处理算法对计算资源和对数据演进的适应性具有额外要求。它们必须逐步处理实例,因为数据的连续流量禁止存储多次通过的数据。合奏学习在这种情况下取​​得了显着的预测性能。实现为一组(几个)个别分类器,合奏是自然可用于任务并行性的。但是,用于捕获概念漂移的增量学习和动态数据结构增加了缓存未命中并阻碍了并行性的好处。本文提出了一种迷你批处理策略,可以改善多核环境中用于流挖掘的多个集合算法的内存访问局部性和性能。借助正式框架,我们证明迷你批量可以显着降低重用距离(以及缓存未命中的数量)。在六种不同的最先进的集合算法上应用四个基准数据集的六种不同特性的实验显示了8个核心处理器上高达5倍的加速。这些效益牺牲了预测性能的少量减少。
translated by 谷歌翻译
小波神经网络(WNN)已在许多领域应用于解决回归和分类问题。大数据出现后,随着数据以轻快的速度生成,必须一旦生成,因为数据的性质可能会在短时间间隔发生巨大变化,因此必须立即进行分析。这是必要的,这是必不可少的,那就是大数据全是普遍的,并给数据科学家带来了计算挑战。因此,在本文中,我们构建了一种有效的可扩展,并行的小波神经网络(SPWNN),该神经网络(SPWNN)采用了平行的随机梯度算法(SGD)算法。 SPWNN是在水平并行化框架中的静态和流环境下设计和开发的。 SPWNN是通过使用Morlet和高斯函数作为激活函数来实现的。这项研究是在具有超过400万个样本和医学研究数据等大数据集上进行的,该数据具有超过10,000个功能,其本质上具有很高的尺寸。实验分析表明,在静态环境中,具有Morlet激活函数的SPWNN优于分类数据集上的高斯SPWNN。但是,在回归的情况下,观察到了相反的情况。相反,在流媒体环境中,高斯在分类方面的表现优于莫雷特,而莫雷特在回归数据集上的表现优于高斯。总体而言,拟议的SPWNN体系结构的速度为1.32-1.40。
translated by 谷歌翻译
越来越多的工作已经认识到利用机器学习(ML)进步的重要性,以满足提取访问控制属性,策略挖掘,策略验证,访问决策等有效自动化的需求。在这项工作中,我们调查和总结了各种ML解决不同访问控制问题的方法。我们提出了ML模型在访问控制域中应用的新分类学。我们重点介绍当前的局限性和公开挑战,例如缺乏公共现实世界数据集,基于ML的访问控制系统的管理,了解黑盒ML模型的决策等,并列举未来的研究方向。
translated by 谷歌翻译
输入管道,其摄取和转换输入数据,是培训机器学习(ML)模型的重要组成部分。然而,实现有效的输入管道有挑战性,因为它需要推理有关并行性,异步的推理和细粒度分析信息的可变性。我们对谷歌数据中心超过200万毫升工作的分析表明,大量模型培训工作可以从更快的输入数据管道中受益。与此同时,我们的分析表明,大多数工作都不饱和主机硬件,指向基于软件的瓶颈的方向。这些发现的动机,我们提出了水管工,一种用于在ML输入管道中找到瓶颈的工具。管道工使用可扩展和可解释的操作分析分析模型来自动调整Host资源约束下的并行性,预取和缓存。在五个代表性ML管道上,水管工可获得最多46倍的误配置管道的加速。通过自动化缓存,与最先进的调谐器相比,水管工获得超过40%的端到端加速。
translated by 谷歌翻译
机器学习,已经在越来越多的系统和应用程序的核心,被设置为更普遍存在的可穿戴设备和物联网的快速崛起。在大多数机器学习应用中,主要焦点是实现的结果的质量(例如,预测准确性),因此正在收集大量数据,需要大量的计算资源来构建模型。但是,在许多情况下,建立大型集中式数据存储库是不可行或不切实际的。例如,在个人健康中,隐私问题可能会抑制详细个人数据的共享。在这种情况下,理想情况下,机器学习应该在可穿戴设备本身上执行,这提高了诸如Smartwatches的电池容量的主要计算限制。因此,本文调查了节俭学习,旨在使用最少量资源来构建最准确的可能模型。通过节俭镜头检查广泛的学习算法,在各种数据集上分析了它们的准确性/运行时性能。此后,最有前途的算法通过在SmartWatch中实现它们,并让他们在手表本身上学习活动识别模型来评估现实世界的情况。
translated by 谷歌翻译
计算机架构和系统已优化了很长时间,以便高效执行机器学习(ML)模型。现在,是时候重新考虑ML和系统之间的关系,并让ML转换计算机架构和系统的设计方式。这有一个双重含义:改善设计师的生产力,以及完成良性周期。在这篇论文中,我们对应用ML进行计算机架构和系统设计的工作进行了全面的审查。首先,我们考虑ML技术在架构/系统设计中的典型作用,即快速预测建模或设计方法,我们执行高级分类学。然后,我们总结了通过ML技术解决的计算机架构/系统设计中的常见问题,并且所用典型的ML技术来解决它们中的每一个。除了在狭义中强调计算机架构外,我们采用数据中心可被认为是仓库规模计算机的概念;粗略的计算机系统中提供粗略讨论,例如代码生成和编译器;我们还注意ML技术如何帮助和改造设计自动化。我们进一步提供了对机会和潜在方向的未来愿景,并设想应用ML的计算机架构和系统将在社区中蓬勃发展。
translated by 谷歌翻译
负责将数据从存储转移到GPU的同时,在培训机器学习模型的同时,数据加载器可能会大大提高培训工作的绩效。最近的进步不仅通过大大减少训练时间,而且还提供了新功能,例如从远程存储(如S3)加载数据,这表明了希望。在本文中,我们是第一个将数据加载器区分为深度学习(DL)工作流程中的单独组件并概述其结构和功能的组件。最后,我们提供了可用的不同数据库,其功能,可用性和性能方面的权衡以及从中获得的见解的全面比较。
translated by 谷歌翻译
Tree boosting is a highly effective and widely used machine learning method. In this paper, we describe a scalable endto-end tree boosting system called XGBoost, which is used widely by data scientists to achieve state-of-the-art results on many machine learning challenges. We propose a novel sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning. More importantly, we provide insights on cache access patterns, data compression and sharding to build a scalable tree boosting system. By combining these insights, XGBoost scales beyond billions of examples using far fewer resources than existing systems.
translated by 谷歌翻译
Emerging applications such as Deep Learning are often data-driven, thus traditional approaches based on auto-tuners are not performance effective across the wide range of inputs used in practice. In the present paper, we start an investigation of predictive models based on machine learning techniques in order to optimize Convolution Neural Networks (CNNs). As a use-case, we focus on the ARM Compute Library which provides three different implementations of the convolution operator at different numeric precision. Starting from a collation of benchmarks, we build and validate models learned by Decision Tree and naive Bayesian classifier. Preliminary experiments on Midgard-based ARM Mali GPU show that our predictive model outperforms all the convolution operators manually selected by the library.
translated by 谷歌翻译
我们设计了一个用户友好且可扩展的知识图构建(KGC)系统,用于从非结构化语料库中提取结构化知识。与现有的KGC系统不同,Gbuilder提供了一种灵活且用户定义的管道,可以包含IE模型的快速开发。可以使用更多基于内置的模板或启发式操作员和可编程操作员来适应来自不同域的数据。此外,我们还为Gbuilder设计了基于云的自适应任务计划,以确保其在大规模知识图构造上的可扩展性。实验评估不仅证明了Gbuilder在统一平台中组织多个信息提取模型的能力,还证实了其在大规模KGC任务上的高可扩展性。
translated by 谷歌翻译
操作系统包括许多启发式算法,旨在提高整体存储性能和吞吐量。由于此类启发式is不能适用于所有条件和工作负载,因此系统设计人员诉诸用户对用户的众多可调参数揭示 - 基本上负担用户不断优化自己的存储系统和应用程序。存储系统通常负责I / O重型应用中的大多数延迟,因此即使是小的总延迟改善也可能很重要。机器学习(ml)技术承诺学习模式,从它们概括,并实现适应更改工作负载的最佳解决方案。我们提出ML解决方案成为OSS中的一流组件,并更换了动态优化存储系统的手动启发式。在本文中,我们描述了我们所提出的ML架构,称为KML。我们开发了一个原型KML体系结构,并将其应用于两个问题:最佳readAhead和NFS读取大小值。我们的实验表明,KML消耗了很少的操作系统资源,延迟可忽略不计,但可以学习可以分别为两种用例的2.3倍或15倍提高I / O吞吐量的模式 - 即使是复杂的,也不是为了复杂 - 在不同的存储设备上同时运行混合工作负载。
translated by 谷歌翻译
联合学习(FL)作为边缘设备的有希望的技术,以协作学习共享预测模型,同时保持其训练数据,从而解耦了从需要存储云中的数据的机器学习的能力。然而,在规模和系统异质性方面,FL难以现实地实现。虽然有许多用于模拟FL算法的研究框架,但它们不支持在异构边缘设备上进行可扩展的流程。在本文中,我们呈现花 - 一种全面的FL框架,通过提供新的设施来执行大规模的FL实验并考虑丰富的异构流程来区分现有平台。我们的实验表明花卉可以仅使用一对高端GPU在客户尺寸下进行FL实验。然后,研究人员可以将实验无缝地迁移到真实设备中以检查设计空间的其他部分。我们认为花卉为社区提供了一个批判性的新工具,用于研究和发展。
translated by 谷歌翻译