Emerging applications such as Deep Learning are often data-driven, thus traditional approaches based on auto-tuners are not performance effective across the wide range of inputs used in practice. In the present paper, we start an investigation of predictive models based on machine learning techniques in order to optimize Convolution Neural Networks (CNNs). As a use-case, we focus on the ARM Compute Library which provides three different implementations of the convolution operator at different numeric precision. Starting from a collation of benchmarks, we build and validate models learned by Decision Tree and naive Bayesian classifier. Preliminary experiments on Midgard-based ARM Mali GPU show that our predictive model outperforms all the convolution operators manually selected by the library.
translated by 谷歌翻译
Deep neural networks (DNNs) are currently widely used for many artificial intelligence (AI) applications including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Accordingly, techniques that enable efficient processing of DNNs to improve energy efficiency and throughput without sacrificing application accuracy or increasing hardware cost are critical to the wide deployment of DNNs in AI systems.This article aims to provide a comprehensive tutorial and survey about the recent advances towards the goal of enabling efficient processing of DNNs. Specifically, it will provide an overview of DNNs, discuss various hardware platforms and architectures that support DNNs, and highlight key trends in reducing the computation cost of DNNs either solely via hardware design changes or via joint hardware design and DNN algorithm changes. It will also summarize various development resources that enable researchers and practitioners to quickly get started in this field, and highlight important benchmarking metrics and design considerations that should be used for evaluating the rapidly growing number of DNN hardware designs, optionally including algorithmic co-designs, being proposed in academia and industry.The reader will take away the following concepts from this article: understand the key design considerations for DNNs; be able to evaluate different DNN hardware implementations with benchmarks and comparison metrics; understand the trade-offs between various hardware architectures and platforms; be able to evaluate the utility of various DNN design techniques for efficient processing; and understand recent implementation trends and opportunities.
translated by 谷歌翻译
深度神经网络(DNNS)的边缘训练是持续学习的理想目标。但是,这受到训练所需的巨大计算能力的阻碍。硬件近似乘数表明,它们在获得DNN推理加速器中获得资源效率的有效性;但是,使用近似乘数的培训在很大程度上尚未开发。为了通过支持DNN培训的近似乘数来构建有效的资源加速器,需要对不同DNN体系结构和不同近似乘数进行彻底评估。本文介绍了近似值,这是一个开源框架,允许使用模拟近似乘数快速评估DNN训练和推理。近似值与TensorFlow(TF)一样用户友好,仅需要对DNN体系结构的高级描述以及近似乘数的C/C ++功能模型。我们通过使用GPU(AMSIM)上的基于基于LUT的近似浮点(FP)乘数模拟器来提高乘数在乘数级别的模拟速度。近似值利用CUDA并有效地将AMSIM集成到张量库中,以克服商业GPU中的本机硬件近似乘数的缺乏。我们使用近似值来评估使用LENET和RESNETS体系结构的小型和大型数据集(包括Imagenet)的近似乘数的DNN训练的收敛性和准确性。与FP32和BFLOAT16乘数相比,评估表明测试准确性相似的收敛行为和可忽略不计的变化。与训练和推理中基于CPU的近似乘数模拟相比,GPU加速近似值快2500倍以上。基于具有本地硬件乘数的高度优化的闭合源Cudnn/Cublas库,原始张量量仅比近似值快8倍。
translated by 谷歌翻译
There is an increasing need to bring machine learning to a wide diversity of hardware devices. Current frameworks rely on vendor-specific operator libraries and optimize for a narrow range of server-class GPUs. Deploying workloads to new platforms -such as mobile phones, embedded devices, and accelerators (e.g., FPGAs, ASICs) -requires significant manual effort. We propose TVM, a compiler that exposes graph-level and operator-level optimizations to provide performance portability to deep learning workloads across diverse hardware back-ends. TVM solves optimization challenges specific to deep learning, such as high-level operator fusion, mapping to arbitrary hardware primitives, and memory latency hiding. It also automates optimization of low-level programs to hardware characteristics by employing a novel, learning-based cost modeling method for rapid exploration of code optimizations. Experimental results show that TVM delivers performance across hardware back-ends that are competitive with state-ofthe-art, hand-tuned libraries for low-power CPU, mobile GPU, and server-class GPUs. We also demonstrate TVM's ability to target new accelerator back-ends, such as the FPGA-based generic deep learning accelerator.The system is open sourced and in production use inside several major companies.
translated by 谷歌翻译
采用基于AI的安全/关键任务应用程序的伟大寻求促使人们对评估应用W.R.T.鲁棒性的方法的兴趣。不仅其训练/调整,而且还由于故障,尤其是软错误而导致的错误,从而影响了基础硬件。存在两种策略:体系结构级故障注入和应用级功能误差模拟。我们提出了一个通过错误模拟引擎对卷积神经网络(CNN)的可靠性分析的框架,该引擎利用了从详细的故障注入活动中提取的一组验证的错误模型。这些错误模型是根据由故障引起的CNN操作员输出的损坏模式定义的,并弥合了故障注入和误差模拟之间的差距,从而利用了两种方法的优势。我们将我们的方法与SASSIFI进行了比较,以进行功能误差模拟W.R.T.的准确性。故障注射,并针对tensorfi进行误差模拟策略的速度。实验结果表明,我们的方法可达到断层效应的99 \%精度W.R.T. SASSIFI,速度从44倍到63x W.R.T. Tensorfi,仅实现有限的误差模型。
translated by 谷歌翻译
在过去十年中,已经开发出新的深度学习(DL)算法,工作负载和硬件来解决各种问题。尽管工作量和硬件生态系统的进步,DL系统的编程方法是停滞不前的。 DL工作负载从DL库中的高度优化,特定于平台和不灵活的内核,或者在新颖的操作员的情况下,通过具有强大性能的DL框架基元建立参考实现。这项工作介绍了Tensor加工基元(TPP),一个编程抽象,用于高效的DL工作负载的高效,便携式实现。 TPPS定义了一组紧凑而多才多艺的2D张镜操作员(或虚拟张量ISA),随后可以用作构建块,以在高维张量上构建复杂的运算符。 TPP规范是平台 - 不可行的,因此通过TPPS表示的代码是便携式的,而TPP实现是高度优化的,并且特定于平台。我们展示了我们使用独立内核和端到端DL&HPC工作负载完全通过TPPS表达的方法的效力和生存性,这在多个平台上优于最先进的实现。
translated by 谷歌翻译
保留保护解决方案使公司能够在履行政府法规的同时将机密数据卸载到第三方服务。为了实现这一点,它们利用了各种密码技术,例如同性恋加密(HE),其允许对加密数据执行计算。大多数他计划以SIMD方式工作,数据包装方法可以显着影响运行时间和内存成本。找到导致最佳性能实现的包装方法是一个艰难的任务。我们提出了一种简单而直观的框架,摘要为用户提供包装决定。我们解释其底层数据结构和优化器,并提出了一种用于执行2D卷积操作的新算法。我们使用此框架来实现他友好的AlexNet版本,在三分钟内运行,比其他最先进的解决方案更快的数量级,只能使用他。
translated by 谷歌翻译
手写数字识别(HDR)是光学特征识别(OCR)领域中最具挑战性的任务之一。不管语言如何,HDR都存在一些固有的挑战,这主要是由于个人跨个人的写作风格的变化,编写媒介和环境的变化,无法在反复编写任何数字等时保持相同的笔触。除此之外,特定语言数字的结构复杂性可能会导致HDR的模棱两可。多年来,研究人员开发了许多离线和在线HDR管道,其中不同的图像处理技术与传统的机器学习(ML)基于基于的和/或基于深度学习(DL)的体系结构相结合。尽管文献中存在有关HDR的广泛审查研究的证据,例如:英语,阿拉伯语,印度,法尔西,中文等,但几乎没有对孟加拉人HDR(BHDR)的调查,这缺乏对孟加拉语HDR(BHDR)的研究,而这些调查缺乏对孟加拉语HDR(BHDR)的研究。挑战,基础识别过程以及可能的未来方向。在本文中,已经分析了孟加拉语手写数字的特征和固有的歧义,以及二十年来最先进的数据集的全面见解和离线BHDR的方法。此外,还详细讨论了一些涉及BHDR的现实应用特定研究。本文还将作为对离线BHDR背后科学感兴趣的研究人员的汇编,煽动了对相关研究的新途径的探索,这可能会进一步导致在不同应用领域对孟加拉语手写数字进行更好的离线认识。
translated by 谷歌翻译
胶囊网络(CAPSNET)是图像处理的新兴趋势。与卷积神经网络相反,CAPSNET不容易受到对象变形的影响,因为对象的相对空间信息在整个网络中保存。但是,它们的复杂性主要与胶囊结构和动态路由机制有关,这使得以其原始形式部署封闭式以由小型微控制器(MCU)供电的设备几乎是不合理的。在一个智力从云到边缘迅速转移的时代,这种高复杂性对在边缘的采用capsnets的采用构成了严重的挑战。为了解决此问题,我们提出了一个API,用于执行ARM Cortex-M和RISC-V MCUS中的量化capsnet。我们的软件内核扩展了ARM CMSIS-NN和RISC-V PULP-NN,以用8位整数作为操作数支持胶囊操作。随之而来的是,我们提出了一个框架,以执行CAPSNET的训练后量化。结果显示,记忆足迹的减少近75%,准确性损失范围从0.07%到0.18%。在吞吐量方面,我们的ARM Cortex-M API可以分别在仅119.94和90.60毫秒(MS)的中型胶囊和胶囊层执行(STM32H7555ZIT6U,Cortex-M7 @ 480 MHz)。对于GAP-8 SOC(RISC-V RV32IMCXPULP @ 170 MHz),延迟分别降至7.02和38.03 ms。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
本文介绍了有关如何架构,设计和优化深神经网络(DNN)的最新概述,以提高性能并保留准确性。该论文涵盖了一组跨越整个机器学习处理管道的优化。我们介绍两种类型的优化。第一个改变了DNN模型,需要重新训练,而第二个则不训练。我们专注于GPU优化,但我们认为提供的技术可以与其他AI推理平台一起使用。为了展示DNN模型优化,我们在流行的Edge AI推理平台(Nvidia Jetson Agx Xavier)上改善了光流的最先进的深层网络体系结构之一,RAFT ARXIV:2003.12039。
translated by 谷歌翻译
在该研究中,提出了一种具有贝叶斯优化(ADSNN-BO)的关注深度可分离的神经网络,以检测和分类稻米图像的水稻疾病。水稻疾病经常导致20至40%的公司生产损失的产量,与全球经济有关。快速疾病鉴定对于计划及时计划治疗并减​​少CORP损失至关重要。水稻疾病诊断仍然主要是手动进行的。为实现AI辅助快速准确的疾病检测,我们提出了基于MobileNet结构的Adsnn-Bo模型和增强注意机制。此外,贝叶斯优化方法应用于调整模型的超级参数。交叉验证的分类实验是基于公共米病数据集进行的,总共有四个类别。实验结果表明,我们的移动兼容ADSNN-BO模型实现了94.65 \%的测试精度,这占据了所有最先进的模型。为了检查我们所提出的模型的可解释性,还进行了包括激活图和过滤器可视化方法的特征分析。结果表明,我们提出的基于关注机制可以更有效地引导Adsnn-Bo模型学习信息性功能。本研究的结果将促进农业领域快速植物疾病诊断和控制的人工智能。
translated by 谷歌翻译
训练机学习(ML)算法是一个计算密集型过程,由于反复访问大型培训数据集,经常会陷入内存。结果,以处理器为中心的系统(例如CPU,GPU)遭受了内存单元和处理单元之间的昂贵数据移动,这会消耗大量的能量和执行周期。以内存为中心的计算系统,即具有内存(PIM)功能,可以减轻此数据运动瓶颈。我们的目标是了解现代通用PIM体系结构加速ML培训的潜力。为此,我们(1)在现实世界通用PIM体系结构上实现了几种代表性的经典ML算法(即线性回归,逻辑回归,决策树,K-均值聚类),(2)严格评估并表征它们在准确性,性能和缩放方面以及(3)与CPU和GPU上的对应物实现相比。我们对具有2500多个PIM核心的真实内存计算系统的评估表明,当PIM硬件在必要的操作和数据类型上,通用PIM架构可以极大地加速内存的ML工作负载。例如,我们对决策树的PIM实施比8核Intel Xeon上的最先进的CPU版本$ 27 \ times $ $,并且比最先进的GPU快$ 1.34 \ times $ $ NVIDIA A100上的版本。我们在PIM上的K-Means聚类分别为$ 2.8 \ times $和$ 3.2 \ times $ $,分别是最先进的CPU和GPU版本。据我们所知,我们的工作是第一个评估现实世界中PIM架构的ML培训的工作。我们以关键的观察,外卖和建议结束,可以激发ML工作负载的用户,PIM架构的程序员以及未来以内存计算系统的硬件设计师和架构师。
translated by 谷歌翻译
基于惯性数据的人类活动识别(HAR)是从智能手机到超低功率传感器的嵌入式设备上越来越扩散的任务。由于深度学习模型的计算复杂性很高,因此大多数嵌入式HAR系统基于简单且不那么精确的经典机器学习算法。这项工作弥合了在设备上的HAR和深度学习之间的差距,提出了一组有效的一维卷积神经网络(CNN),可在通用微控制器(MCUS)上部署。我们的CNN获得了将超参数优化与子字节和混合精确量化的结合,以在分类结果和记忆职业之间找到良好的权衡。此外,我们还利用自适应推断作为正交优化,以根据处理后的输入来调整运行时的推理复杂性,从而产生更灵活的HAR系统。通过在四个数据集上进行实验,并针对超低功率RISC-V MCU,我们表明(i)我们能够为HAR获得一组丰富的帕累托(Pareto)最佳CNN,以范围超过1个数量级记忆,潜伏期和能耗; (ii)由于自适应推断,我们可以从单个CNN开始得出> 20个运行时操作模式,分类分数的不同程度高达10%,并且推理复杂性超过3倍,并且内存开销有限; (iii)在四个基准中的三个基准中,我们的表现都超过了所有以前的深度学习方法,将记忆占用率降低了100倍以上。获得更好性能(浅层和深度)的少数方法与MCU部署不兼容。 (iv)我们所有的CNN都与推理延迟<16ms的实时式evice Har兼容。他们的记忆职业在0.05-23.17 kb中有所不同,其能源消耗为0.005和61.59 UJ,可在较小的电池供应中进行多年的连续操作。
translated by 谷歌翻译
通过卫星摄像机获取关于地球表面的大面积的信息使我们能够看到远远超过我们在地面上看到的更多。这有助于我们在检测和监测土地使用模式,大气条件,森林覆盖和许多非上市方面的地区的物理特征。所获得的图像不仅跟踪连续的自然现象,而且对解决严重森林砍伐的全球挑战也至关重要。其中亚马逊盆地每年占最大份额。适当的数据分析将有助于利用可持续健康的氛围来限制对生态系统和生物多样性的不利影响。本报告旨在通过不同的机器学习和优越的深度学习模型用大气和各种陆地覆盖或土地使用亚马逊雨林的卫星图像芯片。评估是基于F2度量完成的,而用于损耗函数,我们都有S形跨熵以及Softmax交叉熵。在使用预先训练的ImageNet架构中仅提取功能之后,图像被间接馈送到机器学习分类器。鉴于深度学习模型,通过传输学习使用微调Imagenet预训练模型的集合。到目前为止,我们的最佳分数与F2度量为0.927。
translated by 谷歌翻译
操作系统包括许多启发式算法,旨在提高整体存储性能和吞吐量。由于此类启发式is不能适用于所有条件和工作负载,因此系统设计人员诉诸用户对用户的众多可调参数揭示 - 基本上负担用户不断优化自己的存储系统和应用程序。存储系统通常负责I / O重型应用中的大多数延迟,因此即使是小的总延迟改善也可能很重要。机器学习(ml)技术承诺学习模式,从它们概括,并实现适应更改工作负载的最佳解决方案。我们提出ML解决方案成为OSS中的一流组件,并更换了动态优化存储系统的手动启发式。在本文中,我们描述了我们所提出的ML架构,称为KML。我们开发了一个原型KML体系结构,并将其应用于两个问题:最佳readAhead和NFS读取大小值。我们的实验表明,KML消耗了很少的操作系统资源,延迟可忽略不计,但可以学习可以分别为两种用例的2.3倍或15倍提高I / O吞吐量的模式 - 即使是复杂的,也不是为了复杂 - 在不同的存储设备上同时运行混合工作负载。
translated by 谷歌翻译
深神经网络(DNNS)在各种机器学习(ML)应用程序中取得了巨大成功,在计算机视觉,自然语言处理和虚拟现实等中提供了高质量的推理解决方案。但是,基于DNN的ML应用程序也带来计算和存储要求的增加了很多,对于具有有限的计算/存储资源,紧张的功率预算和较小形式的嵌入式系统而言,这尤其具有挑战性。挑战还来自各种特定应用的要求,包括实时响应,高通量性能和可靠的推理准确性。为了应对这些挑战,我们介绍了一系列有效的设计方法,包括有效的ML模型设计,定制的硬件加速器设计以及硬件/软件共同设计策略,以启用嵌入式系统上有效的ML应用程序。
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
可以使用具有快速有效分割网络的深度学习方法来实施医疗图像分割。单板计算机(SBC)由于内存和处理限制而难以用于训练深网。诸如Google Edge TPU之类的特定硬件使其适合使用复杂的预训练网络进行实时预测。在这项工作中,我们研究了两个SBC的性能,具有和不进行硬件加速度进行底面图像分割,尽管这项研究的结论可以通过其他类型的医学图像的深层神经网络应用于分割。为了测试硬件加速的好处,我们使用先前已发布的工作中的网络和数据集,并通过使用具有超声甲状腺图像的数据集进行测试来概括它们。我们在SBC中测量预测时间,并将其与基于云的TPU系统进行比较。结果表明,使用Edge TPU,机器学习加速SBC的可行性可加速光盘和杯赛分段,每图像可获得低于25毫秒的时间。
translated by 谷歌翻译
编译器框架对于广泛使用基于FPGA的深度学习加速器来说是至关重要的。它们允许研究人员和开发人员不熟悉硬件工程,以利用域特定逻辑所获得的性能。存在传统人工神经网络的各种框架。然而,没有多大的研究努力已经进入创建针对尖刺神经网络(SNNS)进行优化的框架。这种新一代的神经网络对于在边缘设备上部署AI的越来越有趣,其具有紧密的功率和资源约束。我们的端到端框架E3NE为FPGA自动生成高效的SNN推理逻辑。基于Pytorch模型和用户参数,它应用各种优化,并评估基于峰值的加速器固有的权衡。多个水平的并行性和新出现的神经编码方案的使用导致优于先前的SNN硬件实现的效率。对于类似的型号,E3NE使用的硬件资源的少于50%,功率较低20%,同时通过幅度降低延迟。此外,可扩展性和通用性允许部署大规模的SNN模型AlexNet和VGG。
translated by 谷歌翻译