Recently, extensive studies on photonic reinforcement learning to accelerate the process of calculation by exploiting the physical nature of light have been conducted. Previous studies utilized quantum interference of photons to achieve collective decision-making without choice conflicts when solving the competitive multi-armed bandit problem, a fundamental example of reinforcement learning. However, the bandit problem deals with a static environment where the agent's action does not influence the reward probabilities. This study aims to extend the conventional approach to a more general multi-agent reinforcement learning targeting the grid world problem. Unlike the conventional approach, the proposed scheme deals with a dynamic environment where the reward changes because of agents' actions. A successful photonic reinforcement learning scheme requires both a photonic system that contributes to the quality of learning and a suitable algorithm. This study proposes a novel learning algorithm, discontinuous bandit Q-learning, in view of a potential photonic implementation. Here, state-action pairs in the environment are regarded as slot machines in the context of the bandit problem and an updated amount of Q-value is regarded as the reward of the bandit problem. We perform numerical simulations to validate the effectiveness of the bandit algorithm. In addition, we propose a multi-agent architecture in which agents are indirectly connected through quantum interference of light and quantum principles ensure the conflict-free property of state-action pair selections among agents. We demonstrate that multi-agent reinforcement learning can be accelerated owing to conflict avoidance among multiple agents.
translated by 谷歌翻译
集体决策对于最近的信息和通信技术至关重要。在我们以前的研究中,我们在数学上得出了无冲突的联合决策,最佳地满足了玩家的概率偏好概况。但是,关于最佳联合决策方法存在两个问题。首先,随着选择的数量的增加,计算最佳关节选择概率矩阵爆炸的计算成本。其次,要得出最佳的关节选择概率矩阵,所有玩家都必须披露其概率偏好。现在,值得注意的是,不一定需要对关节概率分布的明确计算;集体决策的必要条件是抽样。这项研究研究了几种抽样方法,这些方法会融合到满足玩家偏好的启发式关节选择概率矩阵。我们表明,它们可以大大减少上述计算成本和机密性问题。我们分析了每种采样方法的概率分布,以及所需的计算成本和保密性。特别是,我们通过光子的量子干扰引入了两种无冲突的关节抽样方法。第一个系统允许玩家隐藏自己的选择,同时在玩家具有相同的偏好时几乎完美地满足了玩家的喜好。第二个系统,其物理性质取代了昂贵的计算成本,它也掩盖了他们的选择,因为他们拥有可信赖的第三方。
translated by 谷歌翻译
This paper surveys the eld of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the eld and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but di ers considerably in the details and in the use of the word \reinforcement." The paper discusses central issues of reinforcement learning, including trading o exploration and exploitation, establishing the foundations of the eld via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
如今,合作多代理系统用于学习如何在大规模动态环境中实现目标。然而,在这些环境中的学习是具有挑战性的:从搜索空间大小对学习时间的影响,代理商之间的低效合作。此外,增强学习算法可能遭受这种环境的长时间的收敛。本文介绍了通信框架。在拟议的沟通框架中,代理商学会有效地合作,同时通过引入新的状态计算方法,状态空间的大小将大大下降。此外,提出了一种知识传输算法以共享不同代理商之间的获得经验,并制定有效的知识融合机制,以融合利用来自其他团队成员所收到的知识的代理商自己的经验。最后,提供了模拟结果以指示所提出的方法在复杂学习任务中的功效。我们已经评估了我们对牧羊化问题的方法,结果表明,通过利用知识转移机制,学习过程加速了,通过基于状态抽象概念产生类似国家的状态空间的大小均下降。
translated by 谷歌翻译
在这项工作中,我们询问并回答是什么使经典的强化学习合作。在社会困境情况下合作对于动物,人类和机器至关重要。尽管进化论揭示了促进合作的一系列机制,但代理商学习合作的条件受到争议。在这里,我们证明了多项式学习设置的哪些单个要素如何导致合作。具体而言,我们考虑了在经典环境中,在经典的环境中,具有一定的囚犯困境,并在经典的环境中使用Epsilon-Greedy探索进行了广泛使用的时间差异增强算法。两个学习代理中的每一个都学会了一种策略,该策略可以在最后一轮的两个代理商的行动选择上进行以下动作选择。我们发现,除了对未来奖励的高度关心,较低的勘探率和较小的学习率之外,这主要是加固学习过程的内在随机波动,最终合作率将最终的合作率翻了一番,高达80 \%。因此,固有的噪声不是迭代学习过程的必要邪恶。这是学习合作的关键资产。但是,我们还指出了合作行为的很高可能性与在合理的时间内实现这一目标之间的权衡。我们的发现与有目的地设计合作算法和调节不希望的犯罪效果有关。
translated by 谷歌翻译
Though transfer learning is promising to increase the learning efficiency, the existing methods are still subject to the challenges from long-horizon tasks, especially when expert policies are sub-optimal and partially useful. Hence, a novel algorithm named EASpace (Enhanced Action Space) is proposed in this paper to transfer the knowledge of multiple sub-optimal expert policies. EASpace formulates each expert policy into multiple macro actions with different execution time period, then integrates all macro actions into the primitive action space directly. Through this formulation, the proposed EASpace could learn when to execute which expert policy and how long it lasts. An intra-macro-action learning rule is proposed by adjusting the temporal difference target of macro actions to improve the data efficiency and alleviate the non-stationarity issue in multi-agent settings. Furthermore, an additional reward proportional to the execution time of macro actions is introduced to encourage the environment exploration via macro actions, which is significant to learn a long-horizon task. Theoretical analysis is presented to show the convergence of the proposed algorithm. The efficiency of the proposed algorithm is illustrated by a grid-based game and a multi-agent pursuit problem. The proposed algorithm is also implemented to real physical systems to justify its effectiveness.
translated by 谷歌翻译
加固学习在机器学习中推动了令人印象深刻的进步。同时,量子增强机学习算法使用量子退火的底层划伤。最近,已经提出了一种组合两个范例的多代理强化学习(MARL)架构。这种新的算法利用Q值近似的量子Boltzmann机器(QBMS)在收敛所需的时间步长方面具有优于常规的深度增强学习。但是,该算法仅限于单代理和小型2x2多代理网格域。在这项工作中,我们提出了对原始概念的延伸,以解决更具挑战性问题。类似于Classic DQN,我们添加了重播缓冲区的体验,并使用不同的网络来估计目标和策略值。实验结果表明,学习变得更加稳定,使代理能够在具有更高复杂性的网格域中找到最佳策略。此外,我们还评估参数共享如何影响多代理域中的代理行为。量子采样证明是一种有希望的加强学习任务的方法,但目前受到QPU尺寸的限制,因此通过输入和Boltzmann机器的大小。
translated by 谷歌翻译
在这项工作中,我们提出了一种初步调查一种名为DYNA-T的新算法。在钢筋学习(RL)中,规划代理有自己的环境表示作为模型。要发现与环境互动的最佳政策,代理商会收集试验和错误时尚的经验。经验可用于学习更好的模型或直接改进价值函数和政策。通常是分离的,Dyna-Q是一种混合方法,在每次迭代,利用真实体验更新模型以及值函数,同时使用模拟数据从其模型中的应用程序进行行动。然而,规划过程是计算昂贵的并且强烈取决于国家行动空间的维度。我们建议在模拟体验上构建一个上置信树(UCT),并在在线学习过程中搜索要选择的最佳动作。我们证明了我们提出的方法对来自Open AI的三个测试平台环境的一系列初步测试的有效性。与Dyna-Q相比,Dyna-T通过选择更强大的动作选择策略来优于随机环境中的最先进的RL代理。
translated by 谷歌翻译
跨越多个领域的系统的自主权水平正在提高,但是这些系统仍然经历故障。减轻失败风险的一种方法是整合人类对自治系统的监督,并依靠人类在自治失败时控制人类。在这项工作中,我们通过行动建议制定了一种协作决策的方法,该建议在不控制系统的情况下改善行动选择。我们的方法通过通过建议合并共享的隐式信息来修改代理商的信念,并以比遵循建议的行动遵循更少的建议,以更少的建议来利用每个建议。我们假设协作代理人共享相同的目标,并通过有效的行动进行交流。通过假设建议的行动仅取决于国家,我们可以将建议的行动纳入对环境的独立观察。协作环境的假设使我们能够利用代理商的政策来估计行动建议的分布。我们提出了两种使用建议动作的方法,并通过模拟实验证明了该方法。提出的方法可以提高性能,同时对次优的建议也有鲁棒性。
translated by 谷歌翻译
Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
Safe Reinforcement Learning can be defined as the process of learning policies that maximize the expectation of the return in problems in which it is important to ensure reasonable system performance and/or respect safety constraints during the learning and/or deployment processes. We categorize and analyze two approaches of Safe Reinforcement Learning. The first is based on the modification of the optimality criterion, the classic discounted finite/infinite horizon, with a safety factor. The second is based on the modification of the exploration process through the incorporation of external knowledge or the guidance of a risk metric. We use the proposed classification to survey the existing literature, as well as suggesting future directions for Safe Reinforcement Learning.
translated by 谷歌翻译
未用性的自治车辆(无人机)在过去的美国军事活动中对侦察和监督任务进行了重大贡献。随着无人机的普遍性增加,柜台上还有改进,使他们难以在感兴趣的领域成功获得宝贵的智能。因此,现代无人机可以在最大化他们的生存机会的同时实现他们的任务已经重要。在这项工作中,我们专门研究从指定开始到目标的识别短路的问题,同时收集所有奖励,避免随机移动到网格上的对手。我们还可以在军事环境中提供框架的可能应用,即自动伤员疏散。我们展示了三种方法来解决这个问题的比较:即我们实施一个深度Q学习模型,一个$ \ varepsilon $ -greedy表格Q学习模型,以及在线优化框架。我们的计算实验,使用具有随机对手的简单网格世界环境设计,展示这些方法如何工作,并在性能,准确性和计算时间方面进行比较。
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
The reinforcement learning paradigm is a popular way to address problems that have only limited environmental feedback, rather than correctly labeled examples, as is common in other machine learning contexts. While significant progress has been made to improve learning in a single task, the idea of transfer learning has only recently been applied to reinforcement learning tasks. The core idea of transfer is that experience gained in learning to perform one task can help improve learning performance in a related, but different, task. In this article we present a framework that classifies transfer learning methods in terms of their capabilities and goals, and then use it to survey the existing literature, as well as to suggest future directions for transfer learning work.
translated by 谷歌翻译
深度加强学习(DEEPRL)方法已广泛用于机器人学,以了解环境,自主获取行为。深度互动强化学习(Deepirl)包括来自外部培训师或专家的互动反馈,提供建议,帮助学习者选择采取行动以加快学习过程。但是,目前的研究仅限于仅为特工现任提供可操作建议的互动。另外,在单个使用之后,代理丢弃该信息,该用途在为Revisit以相同状态引起重复过程。在本文中,我们提出了广泛的建议(BPA),这是一种广泛的持久的咨询方法,可以保留并重新使用加工信息。它不仅可以帮助培训师提供与类似状态相关的更一般性建议,而不是仅仅是当前状态,而且还允许代理加快学习过程。我们在两个连续机器人场景中测试提出的方法,即购物车极衡任务和模拟机器人导航任务。所得结果表明,使用BPA的代理的性能在于与深层方法相比保持培训师所需的相互作用的数量。
translated by 谷歌翻译
深度加固学习在各种类型的游戏中使人类水平甚至超级人类性能。然而,学习所需的探测量通常很大。深度加强学习也具有超级性能,因为没有人类能够实现这种探索。为了解决这个问题,我们专注于\ Textit {Saspicing}策略,这是一种与现有优化算法的定性不同的方法。因此,我们提出了线性RS(LINR),其是一种令人满意的算法和风险敏感的满足(RS)的线性扩展,用于应用于更广泛的任务。 RS的概括提供了一种算法,可以通过采用现有优化算法的不同方法来减少探索性操作的体积。 Linrs利用线性回归和多字符分类来线性地近似于RS计算所需的动作选择的动作值和比例。我们的实验结果表明,与上下文强盗问题中的现有算法相比,Linrs减少了探索和运行时间的数量。这些结果表明,满足算法的进一步概括对于复杂的环境可能是有用的,包括要用深增强学习处理的环境。
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译
Atari games have been a long-standing benchmark in the reinforcement learning (RL) community for the past decade. This benchmark was proposed to test general competency of RL algorithms. Previous work has achieved good average performance by doing outstandingly well on many games of the set, but very poorly in several of the most challenging games. We propose Agent57, the first deep RL agent that outperforms the standard human benchmark on all 57 Atari games. To achieve this result, we train a neural network which parameterizes a family of policies ranging from very exploratory to purely exploitative. We propose an adaptive mechanism to choose which policy to prioritize throughout the training process. Additionally, we utilize a novel parameterization of the architecture that allows for more consistent and stable learning.
translated by 谷歌翻译