大规模的未标记数据刺激了学习丰富的视觉表示的自我监督学习方法的最新进展。从图像中学习表示表示形式的最先进的自我监督方法(例如Moco,Byol,MSF)使用诱导性偏差,即图像的随机增强(例如随机农作物)应产生相似的嵌入。我们表明,这种方法容易受到后门攻击的影响 - 攻击者通过将触发器(攻击者选择的图像补丁)添加到图像中来毒害未标记数据的一小部分。模型性能在干净的测试图像上很好,但是攻击者可以通过在测试时间显示触发器来操纵模型的决策。在有监督的学习中对后门攻击进行了广泛的研究,据我们所知,我们是第一个研究他们进行自学学习的人。在自学学习中,后门攻击更为实用,因为使用大型未标记的数据使数据检查以消除毒药过敏。我们表明,在我们的目标攻击中,攻击者可以在测试时使用触发器为目标类别产生许多误报。我们还提出了一种基于知识蒸馏的防御方法,以成功中和攻击。我们的代码可在此处提供:https://github.com/umbcvision/ssl-backdoor。
translated by 谷歌翻译
视觉变压器(VIT)最近在各种视觉任务上表现出了典范的性能,并被用作CNN的替代方案。它们的设计基于一种自我发挥的机制,该机制将图像作为一系列斑块进行处理,与CNN相比,这是完全不同的。因此,研究VIT是否容易受到后门攻击的影响很有趣。当攻击者出于恶意目的,攻击者毒害培训数据的一小部分时,就会发生后门攻击。模型性能在干净的测试图像上很好,但是攻击者可以通过在测试时间显示触发器来操纵模型的决策。据我们所知,我们是第一个证明VIT容易受到后门攻击的人。我们还发现VIT和CNNS之间存在着有趣的差异 - 解释算法有效地突出了VIT的测试图像的触发因素,但没有针对CNN。基于此观察结果,我们提出了一个测试时间图像阻止VIT的防御,这将攻击成功率降低了很大。代码可在此处找到:https://github.com/ucdvision/backdoor_transformer.git
translated by 谷歌翻译
With the success of deep learning algorithms in various domains, studying adversarial attacks to secure deep models in real world applications has become an important research topic. Backdoor attacks are a form of adversarial attacks on deep networks where the attacker provides poisoned data to the victim to train the model with, and then activates the attack by showing a specific small trigger pattern at the test time. Most state-of-the-art backdoor attacks either provide mislabeled poisoning data that is possible to identify by visual inspection, reveal the trigger in the poisoned data, or use noise to hide the trigger. We propose a novel form of backdoor attack where poisoned data look natural with correct labels and also more importantly, the attacker hides the trigger in the poisoned data and keeps the trigger secret until the test time.We perform an extensive study on various image classification settings and show that our attack can fool the model by pasting the trigger at random locations on unseen images although the model performs well on clean data. We also show that our proposed attack cannot be easily defended using a state-of-the-art defense algorithm for backdoor attacks.
translated by 谷歌翻译
自我监督学习是一种新兴的机器学习(ML)范式。与监督的学习相比,哪些利用高质量标记的数据集以实现良好的性能相比,自我监督的学习依赖于未标记的数据集来预先培训功能强大的编码器,然后可以将其视为各种下游任务的功能提取器。大量的数据和计算资源消耗使编码器本身成为模型所有者的宝贵知识产权。最近的研究表明,ML模型的版权受到模型窃取攻击的威胁,该攻击旨在训练替代模型以模仿给定模型的行为。我们从经验上表明,预训练的编码器极易受到模型窃取攻击的影响。但是,版权保护算法(例如水印)的大多数努力集中在分类器上。同时,预先培训的编码器版权保护的内在挑战在很大程度上仍然没有研究。我们通过提出SSLGuard,这是第一种用于预训练的编码器的水印算法。鉴于干净的预训练编码器,SSLGuard向其中注入了水印,并输出了水印版本。还采用了阴影训练技术来保留潜在模型窃取攻击下的水印。我们广泛的评估表明,SSLGuard在水印注入和验证方面有效,并且可以防止模型窃取和其他水印去除攻击,例如输入噪声,输出扰动,覆盖,覆盖,模型修剪和微调。
translated by 谷歌翻译
自我监督学习(SSL)是一个日益流行的ML范式,它训练模型以将复杂的输入转换为表示形式而不依赖于明确的标签。这些表示编码的相似性结构可以有效学习多个下游任务。最近,ML-AS-A-A-Service提供商已开始为推理API提供训练有素的SSL模型,该模型将用户输入转换为有用的费用表示。但是,训练这些模型及其对API的曝光涉及的高昂成本都使黑盒提取成为现实的安全威胁。因此,我们探索了对SSL的窃取攻击的模型。与输出标签的分类器上的传统模型提取不同,受害者模型在这里输出表示;与分类器的低维预测分数相比,这些表示的维度明显更高。我们构建了几次新颖的攻击,发现直接在受害者被盗的陈述上训练的方法是有效的,并且能够为下游模型高精度。然后,我们证明现有针对模型提取的防御能力不足,并且不容易改装为SSL的特异性。
translated by 谷歌翻译
随着机器学习数据的策展变得越来越自动化,数据集篡改是一种安装威胁。后门攻击者通过培训数据篡改,以嵌入在该数据上培训的模型中的漏洞。然后通过将“触发”放入模型的输入中的推理时间以推理时间激活此漏洞。典型的后门攻击将触发器直接插入训练数据,尽管在检查时可能会看到这种攻击。相比之下,隐藏的触发后托攻击攻击达到中毒,而无需将触发器放入训练数据即可。然而,这种隐藏的触发攻击在从头开始培训的中毒神经网络时无效。我们开发了一个新的隐藏触发攻击,睡眠代理,在制备过程中使用梯度匹配,数据选择和目标模型重新培训。睡眠者代理是第一个隐藏的触发后门攻击,以对从头开始培训的神经网络有效。我们展示了Imagenet和黑盒设置的有效性。我们的实现代码可以在https://github.com/hsouri/sleeper-agent找到。
translated by 谷歌翻译
近年来,在自学学习(SSL)方面取得了重大成功,这有助于各种下游任务。但是,攻击者可能会窃取此类SSL模型并将其商业化以获利,这对于保护其知识产权(IP)至关重要。大多数现有的IP保护解决方案都是为监督学习模型而设计的,不能直接使用,因为它们要求模型的下游任务和目标标签在水印嵌入过程中已知并获得,这在SSL的域中并非总是可以的。为了解决此类问题,尤其是在水印嵌入过程中下游任务多样化且未知时,我们提出了一种新型的黑盒水印解决方案,名为SSL-WM,以保护SSL模型的所有权。 SSL-WM将水印编码器的水印输入映射到不变的表示空间中,该空间会导致任何下游分类器产生预期的行为,从而允许检测到嵌入式水印。我们使用不同的SSL模型(包括基于对比度和基于生成的生成型)来评估许多任务,例如计算机视觉(CV)和自然语言处理(NLP)等许多任务。实验结果表明,SSL-WM可以有效地验证各种下游任务中被盗SSL模型的所有权。此外,SSL-WM对模型进行微调和修剪攻击非常强大。最后,SSL-WM还可以从评估的水印检测方法中逃避检测,从而证明了其在保护SSL模型IP时的有希望的应用。
translated by 谷歌翻译
Backdoor attacks represent one of the major threats to machine learning models. Various efforts have been made to mitigate backdoors. However, existing defenses have become increasingly complex and often require high computational resources or may also jeopardize models' utility. In this work, we show that fine-tuning, one of the most common and easy-to-adopt machine learning training operations, can effectively remove backdoors from machine learning models while maintaining high model utility. Extensive experiments over three machine learning paradigms show that fine-tuning and our newly proposed super-fine-tuning achieve strong defense performance. Furthermore, we coin a new term, namely backdoor sequela, to measure the changes in model vulnerabilities to other attacks before and after the backdoor has been removed. Empirical evaluation shows that, compared to other defense methods, super-fine-tuning leaves limited backdoor sequela. We hope our results can help machine learning model owners better protect their models from backdoor threats. Also, it calls for the design of more advanced attacks in order to comprehensively assess machine learning models' backdoor vulnerabilities.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Semi-supervised learning methods can train high-accuracy machine learning models with a fraction of the labeled training samples required for traditional supervised learning. Such methods do not typically involve close review of the unlabeled training samples, making them tempting targets for data poisoning attacks. In this paper we investigate the vulnerabilities of semi-supervised learning methods to backdoor data poisoning attacks on the unlabeled samples. We show that simple poisoning attacks that influence the distribution of the poisoned samples' predicted labels are highly effective - achieving an average attack success rate as high as 96.9%. We introduce a generalized attack framework targeting semi-supervised learning methods to better understand and exploit their limitations and to motivate future defense strategies.
translated by 谷歌翻译
后门攻击已成为深度神经网络(DNN)的主要安全威胁。虽然现有的防御方法在检测或擦除后以后展示了有希望的结果,但仍然尚不清楚是否可以设计强大的培训方法,以防止后门触发器首先注入训练的模型。在本文中,我们介绍了\ emph {反后门学习}的概念,旨在培训\ emph {Clean}模型给出了后门中毒数据。我们将整体学习过程框架作为学习\ emph {clean}和\ emph {backdoor}部分的双重任务。从这种观点来看,我们确定了两个后门攻击的固有特征,因为他们的弱点2)后门任务与特定类(后门目标类)相关联。根据这两个弱点,我们提出了一般学习计划,反后门学习(ABL),在培训期间自动防止后门攻击。 ABL引入了标准培训的两级\ EMPH {梯度上升}机制,帮助分离早期训练阶段的后台示例,2)在后续训练阶段中断后门示例和目标类之间的相关性。通过对多个基准数据集的广泛实验,针对10个最先进的攻击,我们经验证明,后卫中毒数据上的ABL培训模型实现了与纯净清洁数据训练的相同性能。代码可用于\ url {https:/github.com/boylyg/abl}。
translated by 谷歌翻译
人群计数是一项回归任务,它估计场景图像中的人数,在一系列安全至关重要的应用程序中起着至关重要的作用,例如视频监视,交通监控和流量控制。在本文中,我们研究了基于深度学习的人群计数模型对后门攻击的脆弱性,这是对深度学习的主要安全威胁。后门攻击者通过数据中毒将后门触发植入目标模型,以控制测试时间的预测。与已经开发和测试的大多数现有后门攻击的图像分类模型不同,人群计数模型是输出多维密度图的回归模型,因此需要不同的技术来操纵。在本文中,我们提出了两次新颖的密度操纵后门攻击(DMBA $^{ - } $和DMBA $^{+} $),以攻击模型以产生任意的大或小密度估计。实验结果证明了我们对五个经典人群计数模型和四种类型数据集的DMBA攻击的有效性。我们还深入分析了后门人群计数模型的独特挑战,并揭示了有效攻击的两个关键要素:1)完整而密集的触发器以及2)操纵地面真相计数或密度图。我们的工作可以帮助评估人群计数模型对潜在后门攻击的脆弱性。
translated by 谷歌翻译
与令人印象深刻的进步触动了我们社会的各个方面,基于深度神经网络(DNN)的AI技术正在带来越来越多的安全问题。虽然在考试时间运行的攻击垄断了研究人员的初始关注,但是通过干扰培训过程来利用破坏DNN模型的可能性,代表了破坏训练过程的可能性,这是破坏AI技术的可靠性的进一步严重威胁。在后门攻击中,攻击者损坏了培训数据,以便在测试时间诱导错误的行为。然而,测试时间误差仅在存在与正确制作的输入样本对应的触发事件的情况下被激活。通过这种方式,损坏的网络继续正常输入的预期工作,并且只有当攻击者决定激活网络内隐藏的后门时,才会发生恶意行为。在过去几年中,后门攻击一直是强烈的研究活动的主题,重点是新的攻击阶段的发展,以及可能对策的提议。此概述文件的目标是审查发表的作品,直到现在,分类到目前为止提出的不同类型的攻击和防御。指导分析的分类基于攻击者对培训过程的控制量,以及防御者验证用于培训的数据的完整性,并监控DNN在培训和测试中的操作时间。因此,拟议的分析特别适合于参考他们在运营的应用方案的攻击和防御的强度和弱点。
translated by 谷歌翻译
随着深度神经网络(DNN)的广泛应用,后门攻击逐渐引起了人们的关注。后门攻击是阴险的,中毒模型在良性样本上的表现良好,只有在给定特定输入时才会触发,这会导致神经网络产生不正确的输出。最先进的后门攻击工作是通过数据中毒(即攻击者注入中毒样品中的数据集中)实施的,并且用该数据集训练的模型被后门感染。但是,当前研究中使用的大多数触发因素都是在一小部分图像上修补的固定图案,并且经常被明显错误地标记,这很容易被人类或防御方法(例如神经清洁和前哨)检测到。同样,DNN很难在没有标记的情况下学习,因为它们可能会忽略小图案。在本文中,我们提出了一种基于频域的广义后门攻击方法,该方法可以实现后门植入而不会错标和访问训练过程。它是人类看不见的,能够逃避常用的防御方法。我们在三个数据集(CIFAR-10,STL-10和GTSRB)的无标签和清洁标签案例中评估了我们的方法。结果表明,我们的方法可以在所有任务上实现高攻击成功率(高于90%),而不会在主要任务上进行大量绩效降解。此外,我们评估了我们的方法的旁路性能,以进行各种防御措施,包括检测训练数据(即激活聚类),输入的预处理(即过滤),检测输入(即Sentinet)和检测模型(即神经清洁)。实验结果表明,我们的方法对这种防御能力表现出极好的鲁棒性。
translated by 谷歌翻译
Open software supply chain attacks, once successful, can exact heavy costs in mission-critical applications. As open-source ecosystems for deep learning flourish and become increasingly universal, they present attackers previously unexplored avenues to code-inject malicious backdoors in deep neural network models. This paper proposes Flareon, a small, stealthy, seemingly harmless code modification that specifically targets the data augmentation pipeline with motion-based triggers. Flareon neither alters ground-truth labels, nor modifies the training loss objective, nor does it assume prior knowledge of the victim model architecture, training data, and training hyperparameters. Yet, it has a surprisingly large ramification on training -- models trained under Flareon learn powerful target-conditional (or "any2any") backdoors. The resulting models can exhibit high attack success rates for any target choices and better clean accuracies than backdoor attacks that not only seize greater control, but also assume more restrictive attack capabilities. We also demonstrate the effectiveness of Flareon against recent defenses. Flareon is fully open-source and available online to the deep learning community: https://github.com/lafeat/flareon.
translated by 谷歌翻译
Contrastive learning pre-trains an image encoder using a large amount of unlabeled data such that the image encoder can be used as a general-purpose feature extractor for various downstream tasks. In this work, we propose PoisonedEncoder, a data poisoning attack to contrastive learning. In particular, an attacker injects carefully crafted poisoning inputs into the unlabeled pre-training data, such that the downstream classifiers built based on the poisoned encoder for multiple target downstream tasks simultaneously classify attacker-chosen, arbitrary clean inputs as attacker-chosen, arbitrary classes. We formulate our data poisoning attack as a bilevel optimization problem, whose solution is the set of poisoning inputs; and we propose a contrastive-learning-tailored method to approximately solve it. Our evaluation on multiple datasets shows that PoisonedEncoder achieves high attack success rates while maintaining the testing accuracy of the downstream classifiers built upon the poisoned encoder for non-attacker-chosen inputs. We also evaluate five defenses against PoisonedEncoder, including one pre-processing, three in-processing, and one post-processing defenses. Our results show that these defenses can decrease the attack success rate of PoisonedEncoder, but they also sacrifice the utility of the encoder or require a large clean pre-training dataset.
translated by 谷歌翻译
最近的作品表明,深度学习模型容易受到后门中毒攻击的影响,在这些攻击中,这些攻击灌输了与外部触发模式或物体(例如贴纸,太阳镜等)的虚假相关性。我们发现这种外部触发信号是不必要的,因为可以使用基于旋转的图像转换轻松插入高效的后门。我们的方法通过旋转有限数量的对象并将其标记错误来构建中毒数据集;一旦接受过培训,受害者的模型将在运行时间推理期间做出不良的预测。它表现出明显的攻击成功率,同时通过有关图像分类和对象检测任务的全面实证研究来保持清洁绩效。此外,我们评估了标准数据增强技术和针对我们的攻击的四种不同的后门防御措施,发现它们都无法作为一致的缓解方法。正如我们在图像分类和对象检测应用程序中所示,我们的攻击只能在现实世界中轻松部署在现实世界中。总体而言,我们的工作突出了一个新的,简单的,物理上可实现的,高效的矢量,用于后门攻击。我们的视频演示可在https://youtu.be/6jif8wnx34m上找到。
translated by 谷歌翻译
Backdoor attacks have emerged as one of the major security threats to deep learning models as they can easily control the model's test-time predictions by pre-injecting a backdoor trigger into the model at training time. While backdoor attacks have been extensively studied on images, few works have investigated the threat of backdoor attacks on time series data. To fill this gap, in this paper we present a novel generative approach for time series backdoor attacks against deep learning based time series classifiers. Backdoor attacks have two main goals: high stealthiness and high attack success rate. We find that, compared to images, it can be more challenging to achieve the two goals on time series. This is because time series have fewer input dimensions and lower degrees of freedom, making it hard to achieve a high attack success rate without compromising stealthiness. Our generative approach addresses this challenge by generating trigger patterns that are as realistic as real-time series patterns while achieving a high attack success rate without causing a significant drop in clean accuracy. We also show that our proposed attack is resistant to potential backdoor defenses. Furthermore, we propose a novel universal generator that can poison any type of time series with a single generator that allows universal attacks without the need to fine-tune the generative model for new time series datasets.
translated by 谷歌翻译
在对抗机器学习中,防止对深度学习系统的攻击的新防御能力在释放更强大的攻击后不久就会破坏。在这种情况下,法医工具可以通过追溯成功的根本原因来为现有防御措施提供宝贵的补充,并为缓解措施提供前进的途径,以防止将来采取类似的攻击。在本文中,我们描述了我们为开发用于深度神经网络毒物攻击的法医追溯工具的努力。我们提出了一种新型的迭代聚类和修剪解决方案,该解决方案修剪了“无辜”训练样本,直到所有剩余的是一组造成攻击的中毒数据。我们的方法群群训练样本基于它们对模型参数的影响,然后使用有效的数据解读方法来修剪无辜簇。我们从经验上证明了系统对三种类型的肮脏标签(后门)毒物攻击和三种类型的清洁标签毒药攻击的功效,这些毒物跨越了计算机视觉和恶意软件分类。我们的系统在所有攻击中都达到了98.4%的精度和96.8%的召回。我们还表明,我们的系统与专门攻击它的四种抗纤维法措施相对强大。
translated by 谷歌翻译
后门学习是研究深神经网络(DNNS)脆弱性的一个新兴而重要的话题。在快速武器竞赛的地位上,正在连续或同时提出许多开创性的后门攻击和防御方法。但是,我们发现对新方法的评估通常是不可思议的,以验证其主张和实际绩效,这主要是由于快速发展,不同的环境以及实施和可重复性的困难。没有彻底的评估和比较,很难跟踪当前的进度并设计文献的未来发展路线图。为了减轻这一困境,我们建立了一个名为Backdoorbench的后门学习的全面基准。它由一个可扩展的基于模块化的代码库(当前包括8个最先进(SOTA)攻击和9种SOTA防御算法的实现),以及完整的后门学习的标准化协议。我们还基于5个模型和4个数据集,对9个防御措施的每对8次攻击进行全面评估,总共8,000对评估。我们从不同的角度进一步介绍了对这8,000次评估的不同角度,研究了对国防算法,中毒比率,模型和数据集对后门学习的影响。 \ url {https://backdoorbench.github.io}公开获得了Backdoorbench的所有代码和评估。
translated by 谷歌翻译