Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
Data heterogeneity across clients in federated learning (FL) settings is a widely acknowledged challenge. In response, personalized federated learning (PFL) emerged as a framework to curate local models for clients' tasks. In PFL, a common strategy is to develop local and global models jointly - the global model (for generalization) informs the local models, and the local models (for personalization) are aggregated to update the global model. A key observation is that if we can improve the generalization ability of local models, then we can improve the generalization of global models, which in turn builds better personalized models. In this work, we consider class imbalance, an overlooked type of data heterogeneity, in the classification setting. We propose FedNH, a novel method that improves the local models' performance for both personalization and generalization by combining the uniformity and semantics of class prototypes. FedNH initially distributes class prototypes uniformly in the latent space and smoothly infuses the class semantics into class prototypes. We show that imposing uniformity helps to combat prototype collapse while infusing class semantics improves local models. Extensive experiments were conducted on popular classification datasets under the cross-device setting. Our results demonstrate the effectiveness and stability of our method over recent works.
translated by 谷歌翻译
Point cloud completion, as the upstream procedure of 3D recognition and segmentation, has become an essential part of many tasks such as navigation and scene understanding. While various point cloud completion models have demonstrated their powerful capabilities, their robustness against adversarial attacks, which have been proven to be fatally malicious towards deep neural networks, remains unknown. In addition, existing attack approaches towards point cloud classifiers cannot be applied to the completion models due to different output forms and attack purposes. In order to evaluate the robustness of the completion models, we propose PointCA, the first adversarial attack against 3D point cloud completion models. PointCA can generate adversarial point clouds that maintain high similarity with the original ones, while being completed as another object with totally different semantic information. Specifically, we minimize the representation discrepancy between the adversarial example and the target point set to jointly explore the adversarial point clouds in the geometry space and the feature space. Furthermore, to launch a stealthier attack, we innovatively employ the neighbourhood density information to tailor the perturbation constraint, leading to geometry-aware and distribution-adaptive modifications for each point. Extensive experiments against different premier point cloud completion networks show that PointCA can cause a performance degradation from 77.9% to 16.7%, with the structure chamfer distance kept below 0.01. We conclude that existing completion models are severely vulnerable to adversarial examples, and state-of-the-art defenses for point cloud classification will be partially invalid when applied to incomplete and uneven point cloud data.
translated by 谷歌翻译
无人驾驶飞机(UAV)通过低成本,大型覆盖,实时和高分辨率数据采集能力而广泛应用于检查,搜索和救援行动的目的。在这些过程中产生了大量航空视频,在这些过程中,正常事件通常占压倒性的比例。本地化和提取异常事件非常困难,这些事件包含手动从长视频流中的潜在有价值的信息。因此,我们致力于开发用于解决此问题的异常检测方法。在本文中,我们创建了一个新的数据集,名为Droneanomaly,用于空中视频中的异常检测。该数据集提供了37个培训视频序列和22个测试视频序列,这些视频序列来自7个不同的现实场景,其中包括各种异常事件。有87,488个彩色视频框架(训练51,635,测试35,853),每秒30帧的尺寸为640美元\ times 640美元。基于此数据集,我们评估现有方法并为此任务提供基准。此外,我们提出了一种新的基线模型,即变压器(ANDT)的异常检测,该模型将连续的视频帧视为一系列小管,它利用变压器编码器从序列中学习特征表示,并利用解码器来预测下一帧。我们的网络模型在训练阶段模型正常,并确定了具有不可预测的时间动力学的事件,作为测试阶段的异常。此外,为了全面评估我们提出的方法的性能,我们不仅使用无人机 - 异常数据集,而且使用另一个数据集。我们将使我们的数据集和代码公开可用。可以在https://youtu.be/ancczyryoby上获得演示视频。我们使数据集和代码公开可用。
translated by 谷歌翻译
由于其低成本和快速移动性,无人驾驶汽车(UAV)现在已广泛应用于数据获取。随着航空视频量的增加,对这些视频自动解析的需求正在激增。为了实现这一目标,当前的研究主要集中于在空间和时间维度沿着卷积的整体特征提取整体特征。但是,这些方法受到小时接收场的限制,无法充分捕获长期的时间依赖性,这对于描述复杂动力学很重要。在本文中,我们提出了一个新颖的深神经网络,称为futh-net,不仅为整体特征建模,而且还模拟了空中视频分类的时间关系。此外,在新型融合模块中,多尺度的时间关系可以完善整体特征,以产生更具歧视性的视频表示。更特别地,FUTH-NET采用了两条道路架构:(1)学习框架外观和短期时间变化的一般特征的整体代表途径,以及(2)捕获跨任意跨越任意时间关系的时间关系途径框架,提供长期的时间依赖性。之后,提出了一个新型的融合模块,以时空整合从这两种途径中学到的两个特征。我们的模型对两个航空视频分类数据集进行了评估,即ERA和无人机操作,并实现了最新结果。这表明了其在不同识别任务(事件分类和人类行动识别)之间的有效性和良好的概括能力。为了促进进一步的研究,我们在https://gitlab.lrz.de/ai4eo/reasoning/futh-net上发布该代码。
translated by 谷歌翻译
数据质量是发展医疗保健中值得信赖的AI的关键因素。大量具有控制混杂因素的策划数据集可以帮助提高下游AI算法的准确性,鲁棒性和隐私性。但是,访问高质量的数据集受数据获取的技术难度的限制,并且严格的道德限制阻碍了医疗保健数据的大规模共享。数据合成算法生成具有与真实临床数据相似的分布的数据,可以作为解决可信度AI的发展过程中缺乏优质数据的潜在解决方案。然而,最新的数据合成算法,尤其是深度学习算法,更多地集中于成像数据,同时忽略了非成像医疗保健数据的综合,包括临床测量,医疗信号和波形以及电子保健记录(EHRS)(EHRS) 。因此,在本文中,我们将回顾合成算法,尤其是对于非成像医学数据,目的是在该领域提供可信赖的AI。本教程风格的审查论文将对包括算法,评估,局限性和未来研究方向在内的各个方面进行全面描述。
translated by 谷歌翻译
域的适应性旨在使标记的源域和未标记的目标域对齐,并且大多数现有方法都认为源数据是可访问的。不幸的是,这种范式引起了数据隐私和安全性的关注。最近的研究试图通过无源设置来消除这些问题,该设置将源训练的模型适应目标域而不暴露源数据。但是,由于对源模型的对抗性攻击,无源范式仍然有数据泄漏的风险。因此,提出了黑框设置,其中只能利用源模型的输出。在本文中,我们同时介绍了无源的适应和黑盒适应性,提出了一种新的方法,即来自频率混合和相互学习(FMML)的“更好的目标表示”。具体而言,我们引入了一种新的数据增强技术作为频率混音,该技术突出了插值中与任务相关的对象,从而增强了目标模型的类符合性和线性行为。此外,我们引入了一种称为相互学习的网络正则化方法,以介绍域的适应问题。它通过自我知识蒸馏传输目标模型内部的知识,从而通过学习多尺度目标表示来减轻对源域的过度拟合。广泛的实验表明,我们的方法在两种设置下都可以在几个基准数据集上实现最新性能。
translated by 谷歌翻译
人群计数是一项回归任务,它估计场景图像中的人数,在一系列安全至关重要的应用程序中起着至关重要的作用,例如视频监视,交通监控和流量控制。在本文中,我们研究了基于深度学习的人群计数模型对后门攻击的脆弱性,这是对深度学习的主要安全威胁。后门攻击者通过数据中毒将后门触发植入目标模型,以控制测试时间的预测。与已经开发和测试的大多数现有后门攻击的图像分类模型不同,人群计数模型是输出多维密度图的回归模型,因此需要不同的技术来操纵。在本文中,我们提出了两次新颖的密度操纵后门攻击(DMBA $^{ - } $和DMBA $^{+} $),以攻击模型以产生任意的大或小密度估计。实验结果证明了我们对五个经典人群计数模型和四种类型数据集的DMBA攻击的有效性。我们还深入分析了后门人群计数模型的独特挑战,并揭示了有效攻击的两个关键要素:1)完整而密集的触发器以及2)操纵地面真相计数或密度图。我们的工作可以帮助评估人群计数模型对潜在后门攻击的脆弱性。
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
事实证明,深度学习是高光谱图像(HSI)分类的一种非常有效的方法。但是,深度神经网络需要大量注释的数据集来概括地概括。这限制了深度学习对HSI分类的适用性,在该分类中,为每个场景手动标记成千上万的像素是不切实际的。在本文中,我们建议利用自我监督学习(SSL)进行HSI分类。我们表明,通过使用Barlow-Twins(一种最先进的SSL算法)在未标记的像素上预先培训编码器,我们可以获得具有少数标签的准确模型。实验结果表明,这种方法明显优于香草的监督学习。
translated by 谷歌翻译