后门学习是研究深神经网络(DNNS)脆弱性的一个新兴而重要的话题。在快速武器竞赛的地位上,正在连续或同时提出许多开创性的后门攻击和防御方法。但是,我们发现对新方法的评估通常是不可思议的,以验证其主张和实际绩效,这主要是由于快速发展,不同的环境以及实施和可重复性的困难。没有彻底的评估和比较,很难跟踪当前的进度并设计文献的未来发展路线图。为了减轻这一困境,我们建立了一个名为Backdoorbench的后门学习的全面基准。它由一个可扩展的基于模块化的代码库(当前包括8个最先进(SOTA)攻击和9种SOTA防御算法的实现),以及完整的后门学习的标准化协议。我们还基于5个模型和4个数据集,对9个防御措施的每对8次攻击进行全面评估,总共8,000对评估。我们从不同的角度进一步介绍了对这8,000次评估的不同角度,研究了对国防算法,中毒比率,模型和数据集对后门学习的影响。 \ url {https://backdoorbench.github.io}公开获得了Backdoorbench的所有代码和评估。
translated by 谷歌翻译
后门攻击已成为深度神经网络(DNN)的主要安全威胁。虽然现有的防御方法在检测或擦除后以后展示了有希望的结果,但仍然尚不清楚是否可以设计强大的培训方法,以防止后门触发器首先注入训练的模型。在本文中,我们介绍了\ emph {反后门学习}的概念,旨在培训\ emph {Clean}模型给出了后门中毒数据。我们将整体学习过程框架作为学习\ emph {clean}和\ emph {backdoor}部分的双重任务。从这种观点来看,我们确定了两个后门攻击的固有特征,因为他们的弱点2)后门任务与特定类(后门目标类)相关联。根据这两个弱点,我们提出了一般学习计划,反后门学习(ABL),在培训期间自动防止后门攻击。 ABL引入了标准培训的两级\ EMPH {梯度上升}机制,帮助分离早期训练阶段的后台示例,2)在后续训练阶段中断后门示例和目标类之间的相关性。通过对多个基准数据集的广泛实验,针对10个最先进的攻击,我们经验证明,后卫中毒数据上的ABL培训模型实现了与纯净清洁数据训练的相同性能。代码可用于\ url {https:/github.com/boylyg/abl}。
translated by 谷歌翻译
最近的研究表明,深度神经网络(DNN)容易受到后门攻击的影响,后门攻击会导致DNN的恶意行为,当时特定的触发器附在输入图像上时。进一步证明,感染的DNN具有一系列通道,与正常通道相比,该通道对后门触发器更敏感。然后,将这些通道修剪可有效缓解后门行为。要定位这些通道,自然要考虑其Lipschitzness,这可以衡量他们对输入上最严重的扰动的敏感性。在这项工作中,我们介绍了一个名为Channel Lipschitz常数(CLC)的新颖概念,该概念定义为从输入图像到每个通道输出的映射的Lipschitz常数。然后,我们提供经验证据,以显示CLC(UCLC)上限与通道激活的触发激活变化之间的强相关性。由于可以从重量矩阵直接计算UCLC,因此我们可以以无数据的方式检测潜在的后门通道,并在感染的DNN上进行简单修剪以修复模型。提出的基于lipschitzness的通道修剪(CLP)方法非常快速,简单,无数据且可靠,可以选择修剪阈值。进行了广泛的实验来评估CLP的效率和有效性,CLP的效率和有效性也可以在主流防御方法中获得最新的结果。源代码可在https://github.com/rkteddy/channel-lipschitzness基于普通范围内获得。
translated by 谷歌翻译
已知深层神经网络(DNN)容易受到后门攻击和对抗攻击的影响。在文献中,这两种攻击通常被视为明显的问题并分别解决,因为它们分别属于训练时间和推理时间攻击。但是,在本文中,我们发现它们之间有一个有趣的联系:对于具有后门种植的模型,我们观察到其对抗性示例具有与触发样品相似的行为,即都激活了同一DNN神经元的子集。这表明将后门种植到模型中会严重影响模型的对抗性例子。基于这一观察结果,我们设计了一种新的对抗性微调(AFT)算法,以防止后门攻击。我们从经验上表明,在5次最先进的后门攻击中,我们的船尾可以有效地擦除后门触发器,而无需在干净的样品上明显的性能降解,并显着优于现有的防御方法。
translated by 谷歌翻译
后门攻击已被证明是对深度学习模型的严重安全威胁,并且检测给定模型是否已成为后门成为至关重要的任务。现有的防御措施主要建立在观察到后门触发器通常尺寸很小或仅影响几个神经元激活的观察结果。但是,在许多情况下,尤其是对于高级后门攻击,违反了上述观察结果,阻碍了现有防御的性能和适用性。在本文中,我们提出了基于新观察的后门防御范围。也就是说,有效的后门攻击通常需要对中毒训练样本的高预测置信度,以确保训练有素的模型具有很高的可能性。基于此观察结果,Dtinspector首先学习一个可以改变最高信心数据的预测的补丁,然后通过检查在低信心数据上应用学习补丁后检查预测变化的比率来决定后门的存在。对五次后门攻击,四个数据集和三种高级攻击类型的广泛评估证明了拟议防御的有效性。
translated by 谷歌翻译
Backdoor attacks represent one of the major threats to machine learning models. Various efforts have been made to mitigate backdoors. However, existing defenses have become increasingly complex and often require high computational resources or may also jeopardize models' utility. In this work, we show that fine-tuning, one of the most common and easy-to-adopt machine learning training operations, can effectively remove backdoors from machine learning models while maintaining high model utility. Extensive experiments over three machine learning paradigms show that fine-tuning and our newly proposed super-fine-tuning achieve strong defense performance. Furthermore, we coin a new term, namely backdoor sequela, to measure the changes in model vulnerabilities to other attacks before and after the backdoor has been removed. Empirical evaluation shows that, compared to other defense methods, super-fine-tuning leaves limited backdoor sequela. We hope our results can help machine learning model owners better protect their models from backdoor threats. Also, it calls for the design of more advanced attacks in order to comprehensively assess machine learning models' backdoor vulnerabilities.
translated by 谷歌翻译
最近的研究表明,深层神经网络容易受到不同类型的攻击,例如对抗性攻击,数据中毒攻击和后门攻击。其中,后门攻击是最狡猾的攻击,几乎可以在深度学习管道的每个阶段发生。因此,后门攻击吸引了学术界和行业的许多兴趣。但是,大多数现有的后门攻击方法对于某些轻松的预处理(例如常见数据转换)都是可见的或脆弱的。为了解决这些限制,我们提出了一种强大而无形的后门攻击,称为“毒药”。具体而言,我们首先利用图像结构作为目标中毒区域,并用毒药(信息)填充它们以生成触发图案。由于图像结构可以在数据转换期间保持其语义含义,因此这种触发模式对数据转换本质上是强大的。然后,我们利用深度注射网络将这种触发模式嵌入封面图像中,以达到隐身性。与现有流行的后门攻击方法相比,毒药的墨水在隐形和健壮性方面都优于表现。通过广泛的实验,我们证明了毒药不仅是不同数据集和网络体系结构的一般性,而且对于不同的攻击场景也很灵活。此外,它对许多最先进的防御技术也具有非常强烈的抵抗力。
translated by 谷歌翻译
典型的深神经网络(DNN)后门攻击基于输入中嵌入的触发因素。现有的不可察觉的触发因素在计算上昂贵或攻击成功率低。在本文中,我们提出了一个新的后门触发器,该扳机易于生成,不可察觉和高效。新的触发器是一个均匀生成的三维(3D)二进制图案,可以水平和/或垂直重复和镜像,并将其超级贴在三通道图像上,以训练后式DNN模型。新型触发器分散在整个图像中,对单个像素产生微弱的扰动,但共同拥有强大的识别模式来训练和激活DNN的后门。我们还通过分析表明,随着图像的分辨率提高,触发因素越来越有效。实验是使用MNIST,CIFAR-10和BTSR数据集上的RESNET-18和MLP模型进行的。在无遗象的方面,新触发的表现优于现有的触发器,例如Badnet,Trojaned NN和隐藏的后门。新的触发因素达到了几乎100%的攻击成功率,仅将分类准确性降低了不到0.7%-2.4%,并使最新的防御技术无效。
translated by 谷歌翻译
Backdoor attacks have emerged as one of the major security threats to deep learning models as they can easily control the model's test-time predictions by pre-injecting a backdoor trigger into the model at training time. While backdoor attacks have been extensively studied on images, few works have investigated the threat of backdoor attacks on time series data. To fill this gap, in this paper we present a novel generative approach for time series backdoor attacks against deep learning based time series classifiers. Backdoor attacks have two main goals: high stealthiness and high attack success rate. We find that, compared to images, it can be more challenging to achieve the two goals on time series. This is because time series have fewer input dimensions and lower degrees of freedom, making it hard to achieve a high attack success rate without compromising stealthiness. Our generative approach addresses this challenge by generating trigger patterns that are as realistic as real-time series patterns while achieving a high attack success rate without causing a significant drop in clean accuracy. We also show that our proposed attack is resistant to potential backdoor defenses. Furthermore, we propose a novel universal generator that can poison any type of time series with a single generator that allows universal attacks without the need to fine-tune the generative model for new time series datasets.
translated by 谷歌翻译
随着深度神经网络(DNN)的广泛应用,后门攻击逐渐引起了人们的关注。后门攻击是阴险的,中毒模型在良性样本上的表现良好,只有在给定特定输入时才会触发,这会导致神经网络产生不正确的输出。最先进的后门攻击工作是通过数据中毒(即攻击者注入中毒样品中的数据集中)实施的,并且用该数据集训练的模型被后门感染。但是,当前研究中使用的大多数触发因素都是在一小部分图像上修补的固定图案,并且经常被明显错误地标记,这很容易被人类或防御方法(例如神经清洁和前哨)检测到。同样,DNN很难在没有标记的情况下学习,因为它们可能会忽略小图案。在本文中,我们提出了一种基于频域的广义后门攻击方法,该方法可以实现后门植入而不会错标和访问训练过程。它是人类看不见的,能够逃避常用的防御方法。我们在三个数据集(CIFAR-10,STL-10和GTSRB)的无标签和清洁标签案例中评估了我们的方法。结果表明,我们的方法可以在所有任务上实现高攻击成功率(高于90%),而不会在主要任务上进行大量绩效降解。此外,我们评估了我们的方法的旁路性能,以进行各种防御措施,包括检测训练数据(即激活聚类),输入的预处理(即过滤),检测输入(即Sentinet)和检测模型(即神经清洁)。实验结果表明,我们的方法对这种防御能力表现出极好的鲁棒性。
translated by 谷歌翻译
深度神经网络(DNN)无处不在的并且跨越各种应用范围从图像分类和面部识别到医学图像分析和实时对象检测。由于DNN模型变得更加复杂和复杂,培训这些模型的计算成本成为负担。出于这个原因,外包培训过程一直是许多DNN用户的转移选项。不幸的是,这是易受止回攻击的脆弱性的成本。这些攻击旨在在DNN中建立隐藏的后门,使得它在清洁样本上表现良好,但在将触发器应用于输入时输出特定的目标标签。当前的后门攻击在空间域中产生触发器;但是,正如我们在本文所展示的那样,它不是漏洞利用的域名,也应该始终“检查其他门”。据我们所知,这项工作是第一个提出用于在频域中生成空间动态(更改)和不可见的(低规范)后门攻击的管道的管道。我们展示利用频域来创造无法在各种数据集和网络架构上进行广泛实验创建未检测和强大的后门攻击的优势。与大多数空间域攻击不同,基于频率的后门攻击可以实现高攻击成功率,低中毒率,并且在表现不可察觉的情况下,仍然没有下降,而难以忍受。此外,我们表明,回顾式模型(我们的攻击中毒)对各种最先进的(SOTA)防御有抵抗力,因此我们有助于两种可能成功逃避攻击的防御。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
最近的研究表明,深度神经网络(DNN)容易受到后门攻击的影响。感染的模型正常在良性输入上行为,而其预测将被迫对对抗数据进行攻击特定目标。已经开发了几种检测方法来区分投入来防御这种攻击。这些防御依赖的常见假设是受感染模型提取的清洁和对抗进口的潜在表示之间存在大的统计差异。但是,虽然缺乏假设是真实的重要性,但缺乏全面的研究。在本文中,我们专注于它并研究以下相关问题:1)统计差异的性质是什么? 2)如何在不损害攻击强度的情况下有效减少它们? 3)这种减少对基于差异的防御有何影响?我们的工作是在三个问题上进行的。首先,通过引入最大平均差异(MMD)作为指标,我们确定多级表示的统计差异都是大的,而不仅仅是最高级别。然后,我们通过在训练后门模型期间向损耗功能添加多级MMD约束来提出统计差异减少方法(SDRM),以有效降低差异。最后,检查了三种典型的基于差异的检测方法。这些防御的F1分数下降到定期训练的后门型号的90%-100%,在所有两个数据集,四个模型架构和四种攻击方法上用SDRM培训的型号上的60%-70%。结果表明,所提出的方法可用于增强现有攻击以逃避后门检测算法。
translated by 谷歌翻译
视觉变压器(VIT)最近在各种视觉任务上表现出了典范的性能,并被用作CNN的替代方案。它们的设计基于一种自我发挥的机制,该机制将图像作为一系列斑块进行处理,与CNN相比,这是完全不同的。因此,研究VIT是否容易受到后门攻击的影响很有趣。当攻击者出于恶意目的,攻击者毒害培训数据的一小部分时,就会发生后门攻击。模型性能在干净的测试图像上很好,但是攻击者可以通过在测试时间显示触发器来操纵模型的决策。据我们所知,我们是第一个证明VIT容易受到后门攻击的人。我们还发现VIT和CNNS之间存在着有趣的差异 - 解释算法有效地突出了VIT的测试图像的触发因素,但没有针对CNN。基于此观察结果,我们提出了一个测试时间图像阻止VIT的防御,这将攻击成功率降低了很大。代码可在此处找到:https://github.com/ucdvision/backdoor_transformer.git
translated by 谷歌翻译
在过去十年中,深度神经网络在各种任务中取得了令人印象深刻的性能,例如自主驾驶,人脸识别和医学诊断。然而,事先作证表明,深度神经网络通过后门攻击将恶意小隐藏触发器注入模型培训,提高严重的安全威胁。要确定触发的神经元并防止反卧系攻击,我们利用福利价值并开发一种名为福利修剪(Shappruning)的新方法,该方法成功地从数据不足的情况下从模型中攻击(每级甚至没有数据) 。考虑到神经元之间的相互作用,Shappruning鉴定了少数感染的神经元(在所有神经元的1%以下),并在修剪诸如许多感染神经元后保护模型的结构和准确性。为了加速Shappruning,我们进一步提出了丢弃的阈值和$ \ epsilon $ -greedy策略以加速福利估计,使得只有几分钟的时间就可以修复中毒模型。实验证明了与现有方法相比,我们对各种攻击和任务的方法的有效性和鲁棒性。
translated by 谷歌翻译
最近的研究表明,尽管在许多现实世界应用上达到了很高的精度,但深度神经网络(DNN)可以被换式:通过将触发的数据样本注入培训数据集中,对手可以将受过训练的模型误导到将任何测试数据分类为将任何测试数据分类为只要提出触发模式,目标类。为了消除此类后门威胁,已经提出了各种方法。特别是,一系列研究旨在净化潜在的损害模型。但是,这项工作的一个主要限制是访问足够的原始培训数据的要求:当可用的培训数据受到限制时,净化性能要差得多。在这项工作中,我们提出了对抗重量掩蔽(AWM),这是一种即使在单一设置中也能擦除神经后门的新颖方法。我们方法背后的关键思想是将其提出为最小最大优化问题:首先,对抗恢复触发模式,然后(软)掩盖对恢复模式敏感的网络权重。对几个基准数据集的全面评估表明,AWM在很大程度上可以改善对各种可用培训数据集大小的其他最先进方法的纯化效果。
translated by 谷歌翻译
与令人印象深刻的进步触动了我们社会的各个方面,基于深度神经网络(DNN)的AI技术正在带来越来越多的安全问题。虽然在考试时间运行的攻击垄断了研究人员的初始关注,但是通过干扰培训过程来利用破坏DNN模型的可能性,代表了破坏训练过程的可能性,这是破坏AI技术的可靠性的进一步严重威胁。在后门攻击中,攻击者损坏了培训数据,以便在测试时间诱导错误的行为。然而,测试时间误差仅在存在与正确制作的输入样本对应的触发事件的情况下被激活。通过这种方式,损坏的网络继续正常输入的预期工作,并且只有当攻击者决定激活网络内隐藏的后门时,才会发生恶意行为。在过去几年中,后门攻击一直是强烈的研究活动的主题,重点是新的攻击阶段的发展,以及可能对策的提议。此概述文件的目标是审查发表的作品,直到现在,分类到目前为止提出的不同类型的攻击和防御。指导分析的分类基于攻击者对培训过程的控制量,以及防御者验证用于培训的数据的完整性,并监控DNN在培训和测试中的操作时间。因此,拟议的分析特别适合于参考他们在运营的应用方案的攻击和防御的强度和弱点。
translated by 谷歌翻译
In this paper, we present a simple yet surprisingly effective technique to induce "selective amnesia" on a backdoored model. Our approach, called SEAM, has been inspired by the problem of catastrophic forgetting (CF), a long standing issue in continual learning. Our idea is to retrain a given DNN model on randomly labeled clean data, to induce a CF on the model, leading to a sudden forget on both primary and backdoor tasks; then we recover the primary task by retraining the randomized model on correctly labeled clean data. We analyzed SEAM by modeling the unlearning process as continual learning and further approximating a DNN using Neural Tangent Kernel for measuring CF. Our analysis shows that our random-labeling approach actually maximizes the CF on an unknown backdoor in the absence of triggered inputs, and also preserves some feature extraction in the network to enable a fast revival of the primary task. We further evaluated SEAM on both image processing and Natural Language Processing tasks, under both data contamination and training manipulation attacks, over thousands of models either trained on popular image datasets or provided by the TrojAI competition. Our experiments show that SEAM vastly outperforms the state-of-the-art unlearning techniques, achieving a high Fidelity (measuring the gap between the accuracy of the primary task and that of the backdoor) within a few minutes (about 30 times faster than training a model from scratch using the MNIST dataset), with only a small amount of clean data (0.1% of training data for TrojAI models).
translated by 谷歌翻译
后门攻击已被证明是对深度学习系统的严重威胁,如生物识别认证和自主驾驶。有效的后门攻击可以在某些预定义条件下执行模型行为,即,触发器,但否则正常表现。然而,现有攻击的触发器直接注入像素空间,这往往可通过现有的防御和在训练和推理阶段进行视觉识别。在本文中,我们通过Trojaning频域提出了一个新的后门攻击ftrojan。关键的直觉是频域中的触发扰动对应于分散整个图像的小像素明智的扰动,打破了现有防御的底层假设,并使中毒图像从清洁的假设可视地无法区分。我们在几个数据集和任务中评估ftrojan,表明它实现了高攻击成功率,而不会显着降低良性输入的预测准确性。此外,中毒图像几乎看不见并保持高感性的质量。我们还评估FTROJAN,以防止最先进的防御以及在频域中设计的若干自适应防御。结果表明,FTROJAN可以强大地避开或显着降解这些防御的性能。
translated by 谷歌翻译
近年来,AI系统的安全性吸引了越来越多的研究,特别是在医学成像领域。为了开发安全的医学图像分析(MIA)系统,必须研究可能的后门攻击(BAS),这可以将隐藏的恶意行为嵌入系统中。然而,由于成像方式的多样性(例如,X射线,CT和MRI)和分析任务(例如,分类,检测和分割),设计可以应用于各种MIA系统的统一BA方法是具有挑战性的。大多数现有的BA方法旨在攻击自然图像分类模型,该模型将空间触发器应用于训练图像,不可避免地破坏中毒像素的语义,导致攻击密集预测模型的失败。为了解决这个问题,我们提出了一种新的基于频率喷射的次频率注入的后门攻击方法(FIBA),其能够在各种MIA任务中提供攻击。具体地,FIBA利用频域中的触发功能,该频域可以通过线性地组合两个图像的光谱幅度将触发图像的低频信息注入中毒图像中。由于它保留了中毒图像像素的语义,因此FIBA可以对分类和密集预测模型进行攻击。 MIA三个基准测试的实验(即,2019年为皮肤病变分类,肾脏肿瘤分割的试剂盒-19,用于内窥镜伪影检测的EAD-2019),验证了FIBA的有效性及其在级的优越性 - 攻击MIA模型的艺术方法以及绕过后门防御。代码将在https://github.com/hazardfy/fiba上获得。
translated by 谷歌翻译