在生物医学数据中寻求预测模型时,人们通常会想到一个目标,例如,具有高精度和低复杂性(以促进可解释性)。我们在此研究是否可以通过我们最近提出的协调算法,安全(解决方案和健身进化)动态调整多个目标。我们发现,与配子工具生成的复杂模拟遗传数据集相比,与标准进化算法相比,Safe能够自动调整精度和复杂性,而无需损失,而没有性能损失。
translated by 谷歌翻译
我们最近提出了安全的 - 解决方案和健身进化 - 一种相应的协调算法,该算法维持两个共同发展的人群:候选解决方案和候选目标函数的种群。我们表明,安全在机器人迷宫领域内发展溶液的成功。本文中,我们介绍了Safe的适应和对多目标问题的应用的研究,其中候选目标功能探索了每个目标的不同权重。尽管初步的结果表明,安全以及共同发展的解决方案和目标功能的概念可以识别一组类似的最佳多物镜解决方案,而无需显式使用帕累托前锋进行健身计算和父母选择。这些发现支持我们的假设,即安全算法概念不仅可以解决复杂的问题,而且可以适应多个目标问题的挑战。
translated by 谷歌翻译
最近,我们强调了一个基本问题,该问题被认为是混淆算法优化的,即\ textit {Confing}与目标函数的目标。即使前者的定义很好,后者也可能并不明显,例如,在学习一种策略来导航迷宫以找到目标(客观)时,有效的目标函数\ textit {评估}策略可能不是一个简单的功能到目标的距离。我们建议自动化可能发现良好的目标功能的手段 - 此处得到的建议。我们提出\ textbf {s} iolution \ textbf {a} nd \ textbf {f} itness \ textbf {e} volution(\ textbf {safe}),a \ textit {comensalistic} coovolutionary algorithm候选解决方案和一系列候选目标功能。作为此概念原理的证明,我们表明安全不仅成功地发展了机器人迷宫领域内的解决方案,而且还可以在进化过程中衡量解决方案质量所需的目标函数。
translated by 谷歌翻译
激活功能(AFS)在神经网络的性能中起关键作用。整流线性单元(RELU)当前是最常用的AF。已经提出了几个替代者,但事实证明,改进措施不一致。一些AFS在特定任务中表现出更好的性能,但是很难先验如何选择合适的任务。研究标准完全连接的神经网络(FCN)和卷积神经网络(CNN),我们提出了一种新颖的,三个人群,共同进化算法来进化AFS,并将其与其他四种方法进行比较,即进化和非进化。在四个数据集(MNIST,FashionMnist,KMNIST和USPS)上进行了测试,共同进化被证明是找到良好的AFS和AF体系结构的性能算法。
translated by 谷歌翻译
我们提供了三种基于二进制和多项式数据集的基于进化符号回归的分类算法:GpleArnClf,CartesianClf和Clasyco。测试了超过162个数据集,并与三种最先进的机器学习算法进行了比较 - XGBOOST,LIGHTGBM和一个深神经网络 - 我们发现我们的算法具有竞争力。此外,我们通过使用最先进的超参数优化器来演示如何自动找到数据集的最佳方法。
translated by 谷歌翻译
语义已成为遗传编程(GP)研究的关键话题。语义是指在数据集上运行时GP个体的输出(行为)。专注于单目标GP中语义多样性的大多数作品表明它在进化搜索方面是非常有益的。令人惊讶的是,在多目标GP(MOGP)中,在语义中进行了小型研究。在这项工作中,我们跨越我们对Mogp中语义的理解,提出SDO:基于语义的距离作为额外标准。这自然鼓励Mogp中的语义多样性。为此,我们在第一个帕累托前面的较密集的区域(最有前途的前沿)找到一个枢轴。然后,这用于计算枢轴与人群中的每个人之间的距离。然后将所得到的距离用作优化以优化以偏及语义分集的额外标准。我们还使用其他基于语义的方法作为基准,称为基于语义相似性的交叉和语义的拥挤距离。此外,我们也使用NSGA-II和SPEA2进行比较。我们使用高度不平衡二进制分类问题,一致地展示我们所提出的SDO方法如何产生更多非主导的解决方案和更好的多样性,导致更好的统计学显着的结果,与其他四种方法相比,使用超卓越症结果作为评估措施。
translated by 谷歌翻译
基准套件提供了对进化算法解决问题能力的有用度量,但是组成问题通常太复杂了,无法清洁算法的优势和劣势。在这里,我们介绍了基准套件档案(``进化运行中的选择方案的诊断概述''),以实证分析有关剥削和探索重要方面的选择方案。利用从根本上是攀岩,但我们考虑两种情况:纯剥削,可以独立优化表示形式中的每个位置,并且受到限制的利用,在该位置之间,由于位置之间的相互作用,向上进展更加有限。当优化路径不太清楚时,需要探索;我们认为能够遵循多个独立的爬山途径和跨健身山谷的能力。这些场景的每种组合都会产生独特的适应性景观,有助于表征与给定选择方案相关的进化动力学。我们分析了六个流行的选择方案。锦标赛的选择和截断选择都在剥削指标方面表现出色,但在需要探索时表现不佳;相反,新颖的搜索在探索方面表现出色,但未能利用梯度。在克服欺骗时,健身共享表现良好,但在所有其他诊断方面都很差。非主导的分类是维持由居住在多个Optima居住的个体组成的不同人群的最佳选择,但努力有效利用梯度。词汇酶选择平衡搜索空间探索而不牺牲剥削,通常在诊断方面表现良好。我们的工作证明了诊断对快速建立对选择方案特征的直观理解的价值,然后可以将其用于改进或开发新的选择方法。
translated by 谷歌翻译
同时发展机器人的形态(体)和控制器(大脑)可能导致后代遗传体和大脑之间的不匹配。为了缓解这个问题,相对较早地提出了通过所谓的生活框架的所谓的生命框架的学习期。但是,实证评估仍缺乏迄今为止。在本文中,我们研究了这种学习机制与不同视角的影响。使用广泛的模拟,我们认为,与纯粹的进化方法相比,学习可以大大提高任务性能并减少一定适合水平所需的几代人数。此外,虽然学习只直接影响控制器,但我们证明了进化的形态也将是不同的。这提供了定量演示,即大脑的变化可以诱导体内的变化。最后,我们研究了给定体学习的能力量化的形态智力的概念。我们观察到学习三角洲,继承与学习大脑之间的性能差异,在整个进化过程中都在增长。这表明演化正在生产具有越来越多的可塑性的机器人,即连续几代变得越来越好,更好的学习者,这反过来使它们更好,在给定的任务中更好地更好。总而言之,我们的结果表明,生活的三角形不仅是理论兴趣的概念,而且是一种具有实际好处的系统架构。
translated by 谷歌翻译
本文提出了一种新的方法,称为模块化语法进化(MGE),以验证以下假设,即限制了神经进化的解决方案空间到模块化和简单的神经网络,可以有效地生成较小,更结构化的神经网络,同时提供可接受的(在某些方面)案例优于大型数据集的精度。 MGE还在两个方向上增强了最新的语法演化(GE)方法。首先,MGE的表示是模块化的,因为每个个体都有一组基因,并且每个基因都通过语法规则映射到神经元。其次,所提出的表示形式减轻了GE的两个重要缺点,即表示较低的表示性和弱位置,以生成具有大量神经元的模块化和多层网络。我们使用MGE定义和评估具有和不具有模块化的五种不同形式的结构,并找到没有耦合更有效的单层模块。我们的实验表明,模块化有助于更快地找到更好的神经网络。我们使用了十个具有不同尺寸,功能计数和输出类计数的众所周知的分类基准验证了提出的方法。我们的实验结果表明,MGE相对于现有的神经进化方法提供了卓越的准确性,并且返回分类器比其他机器学习生成的分类器要简单得多。最后,我们从经验上证明,MGE在局部性和可伸缩性属性方面优于其他GE方法。
translated by 谷歌翻译
大多数现实世界中的问题本质上都是多模式,由多个最佳值组成。多模式优化定义为找到函数的多个全局和局部优化(与单个解决方案相反)的过程。它使用户可以根据需要在不同的解决方案之间切换,同时仍保持最佳系统性能。基于经典梯度的方法未能用于优化问题,因为目标函数是不连续的或不可差的。与需要多个重新启动的经典优化技术相比,进化算法(EAS)能够在单个算法运行中以单个算法运行中的多个解决方案找到多个解决方案,以找到不同的解决方案。因此,已经提出了一些EA来解决此类问题。但是,差异进化(DE)算法是一种基于人群的启发式方法,可以解决此类优化问题,并且可以易于实施。多模式优化问题(MMOP)的潜在挑战是有效地搜索功能空间以准确地定位大多数峰。优化问题可能是最大程度地减少或最大化给定的目标函数,我们旨在解决本研究中多模式功能的最大化问题。因此,我们提出了一种称为增强对立差异进化(EODE)算法的算法来求解MMOP。拟议的算法已在IEEE进化计算(CEC)2013基准功能上进行了测试,并且与现有的最新方法相比,它取得了竞争性结果。
translated by 谷歌翻译
进化计算(EC)已被证明能够快速训练深人造神经网络(DNNS)来解决增强学习(RL)问题。虽然遗传算法(GA)非常适合利用既不具有欺骗性也不稀疏的奖励功能,但当奖励函数是这些功能时,它会挣扎。为此,在某些情况下,新颖的搜索(NS)已被证明能够超越梯度跟随优化器,而在其他情况下则表现不佳。我们提出了一种新算法:探索 - 探索$ \ gamma $ - 适应学习者($ e^2 \ gamma al $或eyal)。通过保留动态大小的寻求新颖的代理商的利基市场,该算法可以维持人口多样性,并在可能的情况下利用奖励信号并探索其他奖励信号。该算法将GA的剥削能力和NS的勘探能力结合在一起,同时保持其简单性和优雅性。我们的实验表明,在大多数情况下,Eyal在与GA相当的情况下都胜过NS - 在某些情况下,它可以均优于两者。 Eyal还允许用其他算法(例如演化策略和惊喜搜索)代替利用组件(GA)和探索组件(NS)(NS),从而为未来的研究打开了大门。
translated by 谷歌翻译
合奏学习在机器学习方面取得了成功,比其他学习方法具有重大优势。袋装是一种突出的合奏学习方法,它创建了被称为袋子的数据子组,该数据被单独的机器学习方法(例如决策树)培训。随机森林是学习过程中具有其他功能的袋装的重要例子。 \ textColor {black} {当单个学习者具有较高的偏见时,包装的限制是汇总预测中的高偏置(模型不足)。}进化算法已突出用于优化问题,并且也用于机器学习。进化算法是无梯度的方法,具有多种候选解决方案,可维持创建新解决方案的多样性。在传统的包装合奏学习中,制作了一次袋子,而在培训示例方面,内容是在学习过程中固定的。在我们的论文中,我们提出了进化装袋的合奏学习,我们利用进化算法来发展袋子的内容,以通过迭代袋中提供多样性来增强合奏。结果表明,在某些约束下,我们的进化合奏装袋方法优于几个基准数据集的常规合奏方法(包装和随机森林)。进化装袋可以固有地维持一套不同的行李,而无需牺牲任何数据。
translated by 谷歌翻译
野火是一种高度普遍的多毒环境现象。这种现象的影响包括人类损失,环境破坏和高昂的经济成本。为了减轻这些效果,已经开发了几个计算机模拟系统,以根据一组输入参数预测火灾行为,也称为场景(风速和方向;温度;等)。但是,由于未知的变量值的不确定性,模拟的结果通常具有高度的误差,因为它们尚不清楚,或者由于其测量可能是不精确,错误或无法实时执行的。先前的工作提出了多种结果的组合,以减少这种不确定性。最先进的方法基于并行优化策略,该策略使用健身函数来指导所有可能场景之间的搜索。尽管这些方法显示了预测质量的改善,但它们具有与用于选择场景的算法有关的一些局限性。为了克服这些局限性,在这项工作中,我们建议应用新颖性搜索范式,该范围取代了目标函数的量度,以衡量所找到的解决方案的新颖性,这使搜索可以与彼此不同的行为不断生成解决方案。这种方法避免了本地Optima,并且可能能够找到有用的解决方案,而其他算法很难或无法找到。与现有方法一样,该提案也可以适用于其他传播模型(洪水,雪崩或滑坡)。
translated by 谷歌翻译
4月20日至22日,在马德里(西班牙)举行的EVO* 2022会议上提交了末期摘要。这些论文介绍了正在进行的研究和初步结果,这些结果研究了对不同问题的不同方法(主要是进化计算)的应用,其中大多数是现实世界中的方法。
translated by 谷歌翻译
为了协助游戏开发人员制作游戏NPC,我们展示了EvolvingBehavior,这是一种新颖的工具,用于基因编程,以在不真实的引擎4中发展行为树4.在初步评估中,我们将演变的行为与我们的研究人员设计的手工制作的树木和随机的树木进行了比较 - 在3D生存游戏中种植的树木。我们发现,在这种情况下,EvolvingBehavior能够产生行为,以实现设计师的目标。最后,我们讨论了共同创造游戏AI设计工具的探索的含义和未来途径,以及行为树进化的挑战和困难。
translated by 谷歌翻译
分类器通常在时间约束的设置中使用,其中必须将标签分配给快速输入。为了解决这些方案,预算的多级分类器(MSC)通过一系列部分特征获取和评估步骤,直到可以进行自信的预测,通过一系列部分特征获取和评估步骤输入。这允许快速评估,可以在时间关键实例中预防昂贵的不必要的特征获取。然而,MSCs的性能对几个设计方面非常敏感 - 使这些系统的优化成为一个重要但困难的问题。为了近似最初的难以应变的组合问题,电流对MSC配置的方法依赖于良好的代理损失函数占两个主要目标(处理成本,错误)。这些方法在许多情况下证明是有用的,但受到分析限制(凸,平滑等)的限制,并且不管理额外的性能目标。值得注意的是,这些方法没有明确地解释实时检测系统的一个重要方面 - 满足风险厌恶监视器施加的一些置信标准的“可接受”预测的比率。本文提出了一种特定于特定于问题的遗传算法的EMSCO,其包括终端拒绝选项,以便犹豫不决预测,并将MSC设计视为具有不同目标的进化优化问题(准确性,成本,覆盖)。该算法的设计强调了Pareto效率,同时尊重通过独特的标定化概念聚合性能的概念。进行实验以展示EMSCO在各种θ(k ^ n)解决方案空间中找到全球最佳的能力,并且多个实验表明EMSCO与替代预算方法具有竞争力。
translated by 谷歌翻译
基于原子量表的材料建模在新材料的发展及其特性的理解中起着重要作用。粒子模拟的准确性由原子间电位确定,该电位允许计算原子系统的势能作为原子坐标和潜在的其他特性的函数。基于原理的临界电位可以达到任意水平的准确性,但是它们的合理性受其高计算成本的限制。机器学习(ML)最近已成为一种有效的方法,可以通过用经过电子结构数据培训的高效替代物代替昂贵的模型来抵消Ab始于原子电位的高计算成本。在当前大量方法中,符号回归(SR)正在成为一种强大的“白盒”方法,以发现原子质潜力的功能形式。这项贡献讨论了符号回归在材料科学(MS)中的作用,并对当前的方法论挑战和最新结果提供了全面的概述。提出了一种基于遗传编程的方法来建模原子能(由原子位置和相关势能的快照组成),并在从头算电子结构数据上进行了经验验证。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
离散基因监管网络(GRNS)在鲁棒性和模块化的研究中起着至关重要的作用。评估GRNS稳健性的常见方法是测量它们调节一组扰动基因激活图案回到其未受干扰的形式的能力。通常,通过收集通过基因激活模式的预定分布产生的随机样品来获得扰动。这种采样方法引入了随机性,否定动态。这种动态施加在已经复杂的健身景观之上。因此,在使用采样的情况下,重要的是要理解哪种效果来自健身景观的结构,并且从施加的动力学产生。健身功能的随机性也会导致重现性和实验后分析中的困难。通过考虑基因活性模式的完全分布,我们制定确定性分布适应性评估,以避免适应性评估中的随机性。这种健身评估有助于重复性。其确定性允许我们在健身上确定理论界,从而确定算法是否达到了全局最优。它使我们能够将问题域与嘈杂的健身评估的影响区分开来,从而解决〜\ CiteT {espinosa2010Specialization}问题领域的行为中的两个剩余异常。我们还揭示了解决方案GRNS的一些属性,使它们具有稳健和模块化,导致对问题域的性质更深入了解。我们通过讨论潜在的方向来模拟和理解较大,更复杂的域中的模块化的出现,这是产生更有用的模块化解决方案的关键,并理解生物系统中的模块化的难以。
translated by 谷歌翻译