我们最近提出了安全的 - 解决方案和健身进化 - 一种相应的协调算法,该算法维持两个共同发展的人群:候选解决方案和候选目标函数的种群。我们表明,安全在机器人迷宫领域内发展溶液的成功。本文中,我们介绍了Safe的适应和对多目标问题的应用的研究,其中候选目标功能探索了每个目标的不同权重。尽管初步的结果表明,安全以及共同发展的解决方案和目标功能的概念可以识别一组类似的最佳多物镜解决方案,而无需显式使用帕累托前锋进行健身计算和父母选择。这些发现支持我们的假设,即安全算法概念不仅可以解决复杂的问题,而且可以适应多个目标问题的挑战。
translated by 谷歌翻译
最近,我们强调了一个基本问题,该问题被认为是混淆算法优化的,即\ textit {Confing}与目标函数的目标。即使前者的定义很好,后者也可能并不明显,例如,在学习一种策略来导航迷宫以找到目标(客观)时,有效的目标函数\ textit {评估}策略可能不是一个简单的功能到目标的距离。我们建议自动化可能发现良好的目标功能的手段 - 此处得到的建议。我们提出\ textbf {s} iolution \ textbf {a} nd \ textbf {f} itness \ textbf {e} volution(\ textbf {safe}),a \ textit {comensalistic} coovolutionary algorithm候选解决方案和一系列候选目标功能。作为此概念原理的证明,我们表明安全不仅成功地发展了机器人迷宫领域内的解决方案,而且还可以在进化过程中衡量解决方案质量所需的目标函数。
translated by 谷歌翻译
在生物医学数据中寻求预测模型时,人们通常会想到一个目标,例如,具有高精度和低复杂性(以促进可解释性)。我们在此研究是否可以通过我们最近提出的协调算法,安全(解决方案和健身进化)动态调整多个目标。我们发现,与配子工具生成的复杂模拟遗传数据集相比,与标准进化算法相比,Safe能够自动调整精度和复杂性,而无需损失,而没有性能损失。
translated by 谷歌翻译
基准套件提供了对进化算法解决问题能力的有用度量,但是组成问题通常太复杂了,无法清洁算法的优势和劣势。在这里,我们介绍了基准套件档案(``进化运行中的选择方案的诊断概述''),以实证分析有关剥削和探索重要方面的选择方案。利用从根本上是攀岩,但我们考虑两种情况:纯剥削,可以独立优化表示形式中的每个位置,并且受到限制的利用,在该位置之间,由于位置之间的相互作用,向上进展更加有限。当优化路径不太清楚时,需要探索;我们认为能够遵循多个独立的爬山途径和跨健身山谷的能力。这些场景的每种组合都会产生独特的适应性景观,有助于表征与给定选择方案相关的进化动力学。我们分析了六个流行的选择方案。锦标赛的选择和截断选择都在剥削指标方面表现出色,但在需要探索时表现不佳;相反,新颖的搜索在探索方面表现出色,但未能利用梯度。在克服欺骗时,健身共享表现良好,但在所有其他诊断方面都很差。非主导的分类是维持由居住在多个Optima居住的个体组成的不同人群的最佳选择,但努力有效利用梯度。词汇酶选择平衡搜索空间探索而不牺牲剥削,通常在诊断方面表现良好。我们的工作证明了诊断对快速建立对选择方案特征的直观理解的价值,然后可以将其用于改进或开发新的选择方法。
translated by 谷歌翻译
在进化多目标优化领域,决策者(DM)涉及相互冲突的目标。在现实世界中,通常存在多个DM,每个DM都涉及这些目标的一部分。提出了多方多目标优化问题(MPMOPS)来描绘拖把,其中涉及多个决策者,每个方都关注所有目标的某些目标。但是,在进化计算字段中,对mpmops的关注不多。本文基于距离最小化问题(DMP)构建了一系列MPMOP,它们的Pareto最佳解决方案可以生动地可视化。为了解决MPMOPS,新提出的算法OPTMPNDS3使用多方初始化方法来初始化总体,并带Jade2操作员生成后代。在问题套件上,将OPTMPNDS3与Optall,OptMPND和OptMPNDS2进行了比较。结果表明OPTMPNDS3与其他算法具有很强的可比性
translated by 谷歌翻译
Most multimodal multi-objective evolutionary algorithms (MMEAs) aim to find all global Pareto optimal sets (PSs) for a multimodal multi-objective optimization problem (MMOP). However, in real-world problems, decision makers (DMs) may be also interested in local PSs. Also, searching for both global and local PSs is more general in view of dealing with MMOPs, which can be seen as a generalized MMOP. In addition, the state-of-the-art MMEAs exhibit poor convergence on high-dimension MMOPs. To address the above two issues, in this study, a novel coevolutionary framework termed CoMMEA for multimodal multi-objective optimization is proposed to better obtain both global and local PSs, and simultaneously, to improve the convergence performance in dealing with high-dimension MMOPs. Specifically, the CoMMEA introduces two archives to the search process, and coevolves them simultaneously through effective knowledge transfer. The convergence archive assists the CoMMEA to quickly approaching the Pareto optimal front (PF). The knowledge of the converged solutions is then transferred to the diversity archive which utilizes the local convergence indicator and the $\epsilon$-dominance-based method to obtain global and local PSs effectively. Experimental results show that CoMMEA is competitive compared to seven state-of-the-art MMEAs on fifty-four complex MMOPs.
translated by 谷歌翻译
The NSGA-II is one of the most prominent algorithms to solve multi-objective optimization problems. Despite numerous successful applications, several studies have shown that the NSGA-II is less effective for larger numbers of objectives. In this work, we use mathematical runtime analyses to rigorously demonstrate and quantify this phenomenon. We show that even on the simple OneMinMax benchmark, where every solution is Pareto optimal, the NSGA-II also with large population sizes cannot compute the full Pareto front (objective vectors of all Pareto optima) in sub-exponential time when the number of objectives is at least three. Our proofs suggest that the reason for this unexpected behavior lies in the fact that in the computation of the crowding distance, the different objectives are regarded independently. This is not a problem for two objectives, where any sorting of a pair-wise incomparable set of solutions according to one objective is also such a sorting according to the other objective (in the inverse order).
translated by 谷歌翻译
Multi-objective feature selection is one of the most significant issues in the field of pattern recognition. It is challenging because it maximizes the classification performance and, at the same time, minimizes the number of selected features, and the mentioned two objectives are usually conflicting. To achieve a better Pareto optimal solution, metaheuristic optimization methods are widely used in many studies. However, the main drawback is the exploration of a large search space. Another problem with multi-objective feature selection approaches is the interaction between features. Selecting correlated features has negative effect on classification performance. To tackle these problems, we present a novel multi-objective feature selection method that has several advantages. Firstly, it considers the interaction between features using an advanced probability scheme. Secondly, it is based on the Pareto Archived Evolution Strategy (PAES) method that has several advantages such as simplicity and its speed in exploring the solution space. However, we improve the structure of PAES in such a way that generates the offsprings, intelligently. Thus, the proposed method utilizes the introduced probability scheme to produce more promising offsprings. Finally, it is equipped with a novel strategy that guides it to find the optimum number of features through the process of evolution. The experimental results show a significant improvement in finding the optimal Pareto front compared to state-of-the-art methods on different real-world datasets.
translated by 谷歌翻译
在本文中,我们提出了一种基于合作进化的可变分组方法,用于大规模多目标问题(LSMOPS),命名为链接测量最小化(LMM)。对于子问题优化阶段,提出了基于估计收敛点的高斯采样算子的混合NSGA-II。根据我们先前的研究,在变量分组阶段中,我们将可变分组问题视为组合优化问题,并且链接测量函数的设计基于非线性检查真实代码(LINC-R)的链接识别。我们将此变量分组方法扩展到LSMOPS。在子问题优化阶段,我们假设在帕累托前(PF)周围现有更好的解决方案的可能性更高。基于这一假设,我们估计每一代优化的收敛点,并在收敛点围绕收敛点进行高斯采样。具有良好客观价值的样本将参与优化作为精英。数值实验表明,我们的变量分组方法比某些流行的变量分组方法更好,并且混合NSGA-II具有多目标问题优化的广泛前景。
translated by 谷歌翻译
客户满意度在移动设备中的能源消耗至关重要。应用程序中最耗能的部分之一是图像。尽管具有不同质量的不同图像消耗了不同量的能量,但没有直接的方法来计算典型图像中操作的能量消耗。首先,本文调查了能源消耗与图像质量以及图像文件大小之间存在相关性。因此,这两者可以被视为能源消耗的代理。然后,我们提出了一种多目标策略,以增强图像质量并根据JPEG图像压缩中的定量表减少图像文件大小。为此,我们使用了两种一般的多目标元启发式方法:基于标量和基于帕累托。标量方法找到基于组合不同目标的单个最佳解决方案,而基于帕累托的技术旨在实现一组解决方案。在本文中,我们将策略纳入五种标量算法,包括能量感知的多目标遗传算法(ENMOGA),能量感知的多目标粒子群优化(ENMOPSO),能量感知的多目标多目标差异进化(ENMODE)(ENMODE)(ENMODE) ,能源感知的多目标进化策略(ENMOES)和能量感知的多目标模式搜索(ENMOPS)。此外,使用两种基于帕累托的方法,包括非主导的分类遗传算法(NSGA-II)和基于参考点的NSGA-II(NSGA-III),用于嵌入方案,以及两种基于帕累托的算法,即两种基于帕累托的算法,即提出了Ennsgaii和Ennsgaiii。实验研究表明,基线算法的性能通过将拟议策略嵌入到元启发式算法中来提高。
translated by 谷歌翻译
最近,已经进行了NSGA-II的第一个数学运行时分析,这是最常见的多目标进化算法(Zheng,Liu,Doerr(AAAI 2022))。继续这一研究方向,我们证明了NSGA-II在使用交叉时,渐近渐近地测试了OneJumpZeroJump基准测试。这是NSGA-II首次证明这种交叉的优势。我们的论点可以转移到单目标优化。然后,他们证明,跨界可以以不同的方式加速$(\ MU+1)$遗传算法,并且比以前更为明显。我们的实验证实了交叉的附加值,并表明观察到的加速度甚至比我们的证明所能保证的要大。
translated by 谷歌翻译
在多目标优化中,一组具有各种功能的可扩展测试问题使研究人员可以调查和评估不同优化算法的能力,因此可以帮助他们设计和开发更有效,更有效的方法。现有的测试问题套件主要集中在所有目标彼此完全冲突的情况下。在这种情况下,目标空间中的M-Obigntive优化问题具有(M-1)维帕累托前沿。但是,在某些优化问题中,目标之间可能存在意外的特征,例如冗余。某些目标的冗余可能会导致具有堕落的帕累托正面的多物镜问题,即,$ m $ - 目标问题的帕累托正面的尺寸小于(M-1)。在本文中,我们系统地研究了退化的多目标问题。我们抽象了退化问题的三个一般特征,这些特征未在文献中进行制定和系统地研究。基于这些特征,我们提出了一组测试问题,以支持在具有冗余目标的情况下对多目标优化算法进行研究。据我们所知,这项工作是第一项明确提出退化问题的三个特征,从而使所得的测试问题的一般性具有一般性的特征,与为特定目的设计的现有测试问题相比(例如,可视化),则允许所得的测试问题。 )。
translated by 谷歌翻译
进化计算(EC)已被证明能够快速训练深人造神经网络(DNNS)来解决增强学习(RL)问题。虽然遗传算法(GA)非常适合利用既不具有欺骗性也不稀疏的奖励功能,但当奖励函数是这些功能时,它会挣扎。为此,在某些情况下,新颖的搜索(NS)已被证明能够超越梯度跟随优化器,而在其他情况下则表现不佳。我们提出了一种新算法:探索 - 探索$ \ gamma $ - 适应学习者($ e^2 \ gamma al $或eyal)。通过保留动态大小的寻求新颖的代理商的利基市场,该算法可以维持人口多样性,并在可能的情况下利用奖励信号并探索其他奖励信号。该算法将GA的剥削能力和NS的勘探能力结合在一起,同时保持其简单性和优雅性。我们的实验表明,在大多数情况下,Eyal在与GA相当的情况下都胜过NS - 在某些情况下,它可以均优于两者。 Eyal还允许用其他算法(例如演化策略和惊喜搜索)代替利用组件(GA)和探索组件(NS)(NS),从而为未来的研究打开了大门。
translated by 谷歌翻译
非主导的分类遗传算法II(NSGA-II)是现实应用中最强烈使用的多目标进化算法(MOEA)。然而,与几个通过数学手段分析的几个简单的MOES相反,到目前为止,NSGA-II也不存在这种研究。在这项工作中,我们表明,数学运行时分析也可用于NSGA-II。结果,我们证明,由于持续因素大于帕累托前方大小的人口大小,具有两个经典突变算子的NSGA-II和三种不同的选择父母的方式满足与Semo和GSEMO相同的渐近运行时保证基本ineminmax和Lotz基准函数的算法。但是,如果人口大小仅等于帕累托前面的大小,那么NSGA-II就无法有效地计算完整的帕累托前部(对于指数迭代,人口总是错过帕累托前部的恒定分数) 。我们的实验证实了上述研究结果。
translated by 谷歌翻译
野火是一种高度普遍的多毒环境现象。这种现象的影响包括人类损失,环境破坏和高昂的经济成本。为了减轻这些效果,已经开发了几个计算机模拟系统,以根据一组输入参数预测火灾行为,也称为场景(风速和方向;温度;等)。但是,由于未知的变量值的不确定性,模拟的结果通常具有高度的误差,因为它们尚不清楚,或者由于其测量可能是不精确,错误或无法实时执行的。先前的工作提出了多种结果的组合,以减少这种不确定性。最先进的方法基于并行优化策略,该策略使用健身函数来指导所有可能场景之间的搜索。尽管这些方法显示了预测质量的改善,但它们具有与用于选择场景的算法有关的一些局限性。为了克服这些局限性,在这项工作中,我们建议应用新颖性搜索范式,该范围取代了目标函数的量度,以衡量所找到的解决方案的新颖性,这使搜索可以与彼此不同的行为不断生成解决方案。这种方法避免了本地Optima,并且可能能够找到有用的解决方案,而其他算法很难或无法找到。与现有方法一样,该提案也可以适用于其他传播模型(洪水,雪崩或滑坡)。
translated by 谷歌翻译
语义已成为遗传编程(GP)研究的关键话题。语义是指在数据集上运行时GP个体的输出(行为)。专注于单目标GP中语义多样性的大多数作品表明它在进化搜索方面是非常有益的。令人惊讶的是,在多目标GP(MOGP)中,在语义中进行了小型研究。在这项工作中,我们跨越我们对Mogp中语义的理解,提出SDO:基于语义的距离作为额外标准。这自然鼓励Mogp中的语义多样性。为此,我们在第一个帕累托前面的较密集的区域(最有前途的前沿)找到一个枢轴。然后,这用于计算枢轴与人群中的每个人之间的距离。然后将所得到的距离用作优化以优化以偏及语义分集的额外标准。我们还使用其他基于语义的方法作为基准,称为基于语义相似性的交叉和语义的拥挤距离。此外,我们也使用NSGA-II和SPEA2进行比较。我们使用高度不平衡二进制分类问题,一致地展示我们所提出的SDO方法如何产生更多非主导的解决方案和更好的多样性,导致更好的统计学显着的结果,与其他四种方法相比,使用超卓越症结果作为评估措施。
translated by 谷歌翻译
大多数现实世界中的问题本质上都是多模式,由多个最佳值组成。多模式优化定义为找到函数的多个全局和局部优化(与单个解决方案相反)的过程。它使用户可以根据需要在不同的解决方案之间切换,同时仍保持最佳系统性能。基于经典梯度的方法未能用于优化问题,因为目标函数是不连续的或不可差的。与需要多个重新启动的经典优化技术相比,进化算法(EAS)能够在单个算法运行中以单个算法运行中的多个解决方案找到多个解决方案,以找到不同的解决方案。因此,已经提出了一些EA来解决此类问题。但是,差异进化(DE)算法是一种基于人群的启发式方法,可以解决此类优化问题,并且可以易于实施。多模式优化问题(MMOP)的潜在挑战是有效地搜索功能空间以准确地定位大多数峰。优化问题可能是最大程度地减少或最大化给定的目标函数,我们旨在解决本研究中多模式功能的最大化问题。因此,我们提出了一种称为增强对立差异进化(EODE)算法的算法来求解MMOP。拟议的算法已在IEEE进化计算(CEC)2013基准功能上进行了测试,并且与现有的最新方法相比,它取得了竞争性结果。
translated by 谷歌翻译
最近,已经进行了多目标进化优化器NSGA-II的第一个数学运行时分析(AAAI 2022,GECCO 2022(出现),ARXIV 2022)。我们通过对由两个多模式目标组成的基准问题进行该算法的第一个运行时分析继续进行这一研究。我们证明,如果人口尺寸$ n $至少是帕累托阵线的四倍,那么NSGA-II具有四种不同方法的NSGA-II选择父母,并且位于Bit Wise突变将优化OnejumpzeroJump基准,其跳高尺寸〜$ 2 \ le lek \ le n/4 $ in Time $ o(n n^k)$。当使用快速突变(最近提出的重型突变操作员)时,此保证将提高$ k^{\ omega(k)} $。总体而言,这项工作表明,NSGA-II至少与全球SEMO算法有关OnejumpZeroJump问题的局部优势。
translated by 谷歌翻译
最近几十年来,已经采用了用于解决各种多主体优化问题(MOPS)的多主体进化算法(MOEAS)的显着进步。但是,这些逐渐改善的MOEAS并不一定配备了精致的可扩展和可学习的解决问题的策略,这些策略能够应对缩放型拖把带来的新的和宏伟的挑战,并不断提高各种方面的复杂性或规模,主要包括昂贵的方面,包括昂贵的方面。功能评估,许多目标,大规模搜索空间,时变环境和多任务。在不同的情况下,它需要不同的思考来设计新的强大MOEAS,以有效地解决它们。在这种情况下,对可学习的MOEAS进行的研究,以机器学习技术进行缩放的拖把,在进化计算领域受到了广泛的关注。在本文中,我们从可扩展的拖把和可学习的MOEAS的分类学开始,然后分析将拖把构成对传统MOEAS的挑战的分析。然后,我们综合概述了可学习的MOEAS的最新进展,以求解各种扩展拖把,主要集中在三个有吸引力的有前途的方向上(即,可学习的环境选择的可学习的进化鉴别器,可学习的进化生物的可学习生殖发生器,以及可学习的进化转移,用于分享或分享或分享或进行分享或可学习的转移。不同问题域之间的经验)。在本文中提供了有关可学习的MOEAS的见解,以参考该领域的努力的一般踪迹。
translated by 谷歌翻译