Boll Weevil(Anthonomus Grandis L.)是一种严重的害虫,主要以棉花为食。由于亚热带气候条件,在德克萨斯州的下里奥格兰德山谷等地方,棉花植物可以全年生长,因此,收获期间上一个季节的剩下的种子可以在玉米中的旋转中继续生长(Zea Mays L.)和高粱(高粱双色L.)。这些野性或志愿棉花(VC)植物到达Pinhead平方阶段(5-6叶阶段)可以充当Boll Weevil Pest的宿主。得克萨斯州的鲍尔象鼻虫根除计划(TBWEP)雇用人们在道路或田野侧面生长的风险投资和消除旋转作物的田间生长,但在田野中生长的植物仍未被发现。在本文中,我们证明了基于您的计算机视觉(CV)算法的应用,仅在三个不同的生长阶段(V3,V6)(V3,V6)中检测出在玉米场中生长的VC植物,以检测在玉米场中生长的VC植物的应用。使用无人飞机系统(UAS)遥感图像。使用Yolov5(S,M,L和X)的所有四个变体,并根据分类精度,平均平均精度(MAP)和F1得分进行比较。发现Yolov5s可以在玉米的V6阶段检测到最大分类精度为98%,地图为96.3%,而Yolov5s和Yolov5m的地图为96.3%,而Yolov5m的分类精度为85%,Yolov5m和Yolov5m的分类准确性最小,而Yolov5L的分类精度最少。在VT阶段,在尺寸416 x 416像素的图像上为86.5%。开发的CV算法有可能有效地检测和定位在玉米场中间生长的VC植物,并加快TBWEP的管理方面。
translated by 谷歌翻译
为了控制棉花场中的鲍尔象鼻虫(Anthonomus Grandis L.)害虫重新感染,目前的志愿棉花(VC)(VC)(gossypium hirsutum L.)植物检测玉米(Zea Mays L.)和Sorghum等旋转作物中的植物检测(高粱双色L.)涉及在田野边缘的手动田地侦察。这导致许多风险植物在田野中间生长仍未被发现,并继续与玉米和高粱并肩生长。当他们到达Pinhead平方阶段(5-6片叶子)时,它们可以充当鲍尔维尔虫害的宿主。因此,需要检测,定位,然后精确地用化学物质进行斑点。在本文中,我们介绍了Yolov5M在放射线和伽马校正的低分辨率(1.2兆像素)的多光谱图像中的应用,以检测和定位在康沃尔场的流苏中间(VT)生长阶段生长的VC植物。我们的结果表明,可以以平均平均精度(地图)为79%,分类精度为78%,大小为1207 x 923像素的分类精度为78%,平均推理速度在NVIDIA上的平均推理速度接近47帧(FPS) NVIDIA JETSON TX2 GPU上的Tesla P100 GPU-16GB和0.4 fps。我们还证明了基于开发的计算机视觉(CV)算法的定制无人飞机系统(UAS)的应用应用程序应用程序,以及如何将其用于近乎实时检测和缓解玉米领域中VC植物的近乎实时检测和缓解为了有效地管理鲍尔象鼻虫害虫。
translated by 谷歌翻译
自1800年代后期从墨西哥进入美国以来,棉花象鼻虫是Anthonomus Grandis Boheman是美国棉花行业的严重害虫,其损失超过160亿美元。这种害虫几乎被根除了。但是,得克萨斯州南部仍然面临这个问题,由于其亚热带气候可以全年生长,因此每年始终容易恢复有害生物。一旦到达销售虫(玉米),一旦它们到达销售虫的植物,志愿棉花(VC)植物一旦到达销子,可以作为这些害虫的宿主,一旦它们到达销钉头阶段(5-6叶阶段),因此需要检测到,位于,位于,位置,并被摧毁或喷涂。在本文中,我们介绍了一项研究,用于使用Yolov3在无人飞机系统(UAS)收集的三个频段航空图像上检测玉米田中的VC植物。本文的两倍目标是:(i)确定Yolov3是否可以使用UAS和(II)收集的RGB(红色,绿色和蓝色)在玉米场中进行VC检测来研究行为基于平均精度(AP),平均平均精度(MAP)和95%的95%的图像(320 x 320,s1; 416 x 416,s2; 416 x 416,s2;和512 x 512,s3像素)的图像上的yolov3的图像。信心水平。在三个量表之间,MAP没有显着差异,而S1和S3之间的AP存在显着差异(P = 0.04),S2和S3(P = 0.02)。 S2和S3之间的F1分数也存在显着差异(P = 0.02)。在所有三个量表上,MAP缺乏显着差异表明,训练有素的Yolov3模型可用于基于计算机视觉的远程试验的航空应用系统(RPAA),以实时实时实时进行VC检测和喷雾应用。
translated by 谷歌翻译
Plastic shopping bags that get carried away from the side of roads and tangled on cotton plants can end up at cotton gins if not removed before the harvest. Such bags may not only cause problem in the ginning process but might also get embodied in cotton fibers reducing its quality and marketable value. Therefore, it is required to detect, locate, and remove the bags before cotton is harvested. Manually detecting and locating these bags in cotton fields is labor intensive, time-consuming and a costly process. To solve these challenges, we present application of four variants of YOLOv5 (YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x) for detecting plastic shopping bags using Unmanned Aircraft Systems (UAS)-acquired RGB (Red, Green, and Blue) images. We also show fixed effect model tests of color of plastic bags as well as YOLOv5-variant on average precision (AP), mean average precision (mAP@50) and accuracy. In addition, we also demonstrate the effect of height of plastic bags on the detection accuracy. It was found that color of bags had significant effect (p < 0.001) on accuracy across all the four variants while it did not show any significant effect on the AP with YOLOv5m (p = 0.10) and YOLOv5x (p = 0.35) at 95% confidence level. Similarly, YOLOv5-variant did not show any significant effect on the AP (p = 0.11) and accuracy (p = 0.73) of white bags, but it had significant effects on the AP (p = 0.03) and accuracy (p = 0.02) of brown bags including on the mAP@50 (p = 0.01) and inference speed (p < 0.0001). Additionally, height of plastic bags had significant effect (p < 0.0001) on overall detection accuracy. The findings reported in this paper can be useful in speeding up removal of plastic bags from cotton fields before harvest and thereby reducing the amount of contaminants that end up at cotton gins.
translated by 谷歌翻译
水果苍蝇是果实产量最有害的昆虫物种之一。在AlertTrap中,使用不同的最先进的骨干功能提取器(如MobiLenetv1和MobileNetv2)的SSD架构的实现似乎是实时检测问题的潜在解决方案。SSD-MobileNetv1和SSD-MobileNetv2表现良好并导致AP至0.5分别为0.957和1.0。YOLOV4-TINY优于SSD家族,在AP@0.5中为1.0;但是,其吞吐量速度略微慢。
translated by 谷歌翻译
Asteroids are an indelible part of most astronomical surveys though only a few surveys are dedicated to their detection. Over the years, high cadence microlensing surveys have amassed several terabytes of data while scanning primarily the Galactic Bulge and Magellanic Clouds for microlensing events and thus provide a treasure trove of opportunities for scientific data mining. In particular, numerous asteroids have been observed by visual inspection of selected images. This paper presents novel deep learning-based solutions for the recovery and discovery of asteroids in the microlensing data gathered by the MOA project. Asteroid tracklets can be clearly seen by combining all the observations on a given night and these tracklets inform the structure of the dataset. Known asteroids were identified within these composite images and used for creating the labelled datasets required for supervised learning. Several custom CNN models were developed to identify images with asteroid tracklets. Model ensembling was then employed to reduce the variance in the predictions as well as to improve the generalisation error, achieving a recall of 97.67%. Furthermore, the YOLOv4 object detector was trained to localize asteroid tracklets, achieving a mean Average Precision (mAP) of 90.97%. These trained networks will be applied to 16 years of MOA archival data to find both known and unknown asteroids that have been observed by the survey over the years. The methodologies developed can be adapted for use by other surveys for asteroid recovery and discovery.
translated by 谷歌翻译
大多数杂草物种都会通过竞争高价值作物所需的营养而产生对农业生产力的不利影响。手动除草对于大型种植区不实用。已经开展了许多研究,为农业作物制定了自动杂草管理系统。在这个过程中,其中一个主要任务是识别图像中的杂草。但是,杂草的认可是一个具有挑战性的任务。它是因为杂草和作物植物的颜色,纹理和形状类似,可以通过成像条件,当记录图像时的成像条件,地理或天气条件进一步加剧。先进的机器学习技术可用于从图像中识别杂草。在本文中,我们调查了五个最先进的深神经网络,即VGG16,Reset-50,Inception-V3,Inception-Resnet-V2和MobileNetv2,并评估其杂草识别的性能。我们使用了多种实验设置和多个数据集合组合。特别是,我们通过组合几个较小的数据集,通过数据增强构成了一个大型DataSet,缓解了类别不平衡,并在基于深度神经网络的基准测试中使用此数据集。我们通过保留预先训练的权重来调查使用转移学习技术来利用作物和杂草数据集的图像提取特征和微调它们。我们发现VGG16比小规模数据集更好地执行,而ResET-50比其他大型数据集上的其他深网络更好地执行。
translated by 谷歌翻译
我们介绍了一种新颖的深度学习方法,用于使用高分辨率的多光谱空中图像在城市环境中检测单个树木。我们使用卷积神经网络来回归一个置信图,指示单个树的位置,该位置是使用峰查找算法本地化的。我们的方法通过检测公共和私人空间中的树木来提供完整的空间覆盖范围,并可以扩展到很大的区域。在我们的研究区域,跨越南加州的五个城市,我们的F评分为0.735,RMSE为2.157 m。我们使用我们的方法在加利福尼亚城市森林中生产所有树木的地图,这表明我们有可能在前所未有的尺度上支持未来的城市林业研究。
translated by 谷歌翻译
截至2017年,鱼类产品约占全球人类饮食的16%。计数作用是生产和生产这些产品的重要组成部分。种植者必须准确计算鱼类,以便这样做技术解决方案。开发了两个计算机视觉系统,以自动计算在工业池塘中生长的甲壳类幼虫。第一个系统包括带有3024x4032分辨率的iPhone 11摄像头,该摄像头在室内条件下从工业池塘中获取图像。使用该系统进行了两次实验,第一部实验包括在一天的增长阶段,在9,10的一天中使用iPhone 11相机在特定照明条件下获得的200张图像。在第二个实验中,用两个设备iPhone 11和索尼DSCHX90V摄像机拍摄了一个幼虫工业池。使用第一个设备(iPhone 11)测试了两个照明条件。在每种情况下,都获得了110张图像。该系统的准确性为88.4%的图像检测。第二个系统包括DSLR Nikon D510相机,具有2000x2000分辨率,在工业池塘外进行了七次实验。在幼虫生长阶段的第1天获取图像,从而获得了总共700张图像。该系统的密度为50的精度为86%。一种基于Yolov5 CNN模型开发的算法,该算法自动计算两种情况的幼虫数量。此外,在这项研究中,开发了幼虫生长函数。每天,从工业池塘手动取几个幼虫,并在显微镜下进行分析。确定生长阶段后,就获得了幼虫的图像。每个幼虫的长度都是通过图像手动测量的。最合适的模型是Gompertz模型,其拟合指数的良好性r平方为0.983。
translated by 谷歌翻译
随着全球的太阳能能力继续增长,越来越意识到先进的检验系统正度重视安排智能干预措施并最大限度地减少停机时间。在这项工作中,我们提出了一种新的自动多级模型,以通过使用YOLOV3网络和计算机视觉技术来检测由无人机捕获的空中图像上的面板缺陷。该模型结合了面板和缺陷的检测来改进其精度。主要的Noveltize由其多功能性来处理热量或可见图像,并检测各种缺陷及其对屋顶和地面安装的光伏系统和不同面板类型的缺陷。拟议的模型已在意大利南部的两个大型光伏工厂验证,优秀的AP至0.5超过98%,对于面板检测,卓越的AP@0.4(AP@0.5)大约为88.3%(66.95%)的热点红外热成像和MAP@0.5在可见光谱中近70%,用于检测通过污染和鸟粪诱导,分层,水坑的存在和覆盖屋顶板诱导的面板遮蔽的异常谱。还预测了对污染覆盖的估计。最后讨论了对不同yolov3的输出尺度对检测的影响的分析。
translated by 谷歌翻译
近年来,在基于视觉的施工站点安全系统的背景下,特别是关于个人保护设备,对深度学习方法引起了很多关注。但是,尽管有很多关注,但仍然没有可靠的方法来建立工人与硬帽之间的关系。为了回答此问题,本文提出了深入学习,对象检测和头部关键点本地化的结合以及简单的基于规则的推理。在测试中,该解决方案基于不同实例的相对边界框位置以及直接检测硬帽佩戴者和非磨损者的方法超过了先前的方法。结果表明,新颖的深度学习方法与基于人性化的规则系统的结合可能会导致一种既可靠又可以成功模仿现场监督的解决方案。这项工作是开发完全自主建筑工地安全系统的下一步,表明该领域仍有改进的余地。
translated by 谷歌翻译
在这项研究中,提出了一种集成检测模型,即Swin-Transformer-Yolov5或Swin-T-Yolov5,用于实时葡萄酒葡萄束检测,以继承Yolov5和Swin-Transformer的优势。该研究是针对2019年7月至9月的两种不同的霞多丽(始终白色或白色混合浆果皮肤)和梅洛(白色或白色混合浆果皮肤)的研究。从2019年7月至9月。 -yolov5,其性能与几个常用/竞争性对象探测器进行了比较,包括更快的R-CNN,Yolov3,Yolov4和Yolov5。在不同的测试条件下评估了所有模型,包括两个不同的天气条件(阳光和多云),两个不同的浆果成熟度(不成熟和成熟)以及三个不同的阳光方向/强度(早晨,中午和下午)进行全面比较。此外,Swin-t-Yolov5的预测葡萄束数量与地面真实值进行了比较,包括在注释过程中的现场手动计数和手动标记。结果表明,拟议的SWIN-T-YOLOV5的表现优于所有其他研究的葡萄束检测模型,当天气多云时,最高平均平均精度(MAP)和0.89的F1得分的97%。该地图分别比更快的R-CNN,Yolov3,Yolov4和Yolov5大约大约44%,18%,14%和4%。当检测到未成熟的浆果时,Swin-T-Yolov5获得了最低的地图(90%)和F1分数(0.82),其中该地图大约比相同的浆果大约40%,5%,3%和1%。此外,在将预测与地面真相进行比较时,Swin-T-Yolov5在Chardonnay品种上的表现更好,最多可达到R2的0.91和2.36根均方根误差(RMSE)。但是,它在Merlot品种上的表现不佳,仅达到R2和3.30的RMSE的0.70。
translated by 谷歌翻译
街道级别图像对原位数据收集进行扩大占据了重要潜力。通过组合使用便宜的高质量相机与最近的深度学习计算解决方案的进步来实现这一点,以推导出相关专题信息。我们介绍了一个框架,用于使用计算机视觉从街道层图像中收集和提取作物类型和候选信息。在2018年生长季节期间,高清图片被捕获在荷兰弗莱洛兰省的侧视动作相机。每个月从3月到10月,调查了一个固定的200公里路线,每秒收集一张照片,结果总计40万个地理标记的图片。在220个特定的包裹物位置,记录了现场作物的观察结果,以获得17种作物。此外,时间跨度包括特定的出苗前包裹阶段,例如用于春季和夏季作物的不同栽培的裸土,以及收获后栽培实践,例如,绿色皱眉和捕捉庄稼。基于与卷积神经网络(MobileNet)的转移学习,使用具有众所周知的图像识别模型的Tensorflow进行分类。开发了一种超核解方法,以获得160型号的表现最佳模型。这种最佳模型应用于独立推理的鉴别作物类型,宏观F1分数为88.1%的宏观效果,在包裹水平的86.9%。讨论了这种方法的潜力和警告以及实施和改进的实际考虑因素。所提出的框架速度升高了高质量的原位数据收集,并通过使用计算机视觉自动分类建议大规模数据收集的途径。
translated by 谷歌翻译
每年,AEDESAEGYPTI蚊子都感染了数百万人,如登录,ZIKA,Chikungunya和城市黄热病等疾病。战斗这些疾病的主要形式是通过寻找和消除潜在的蚊虫养殖场来避免蚊子繁殖。在这项工作中,我们介绍了一个全面的空中视频数据集,获得了无人驾驶飞行器,含有可能的蚊帐。使用识别所有感兴趣对象的边界框手动注释视频数据集的所有帧。该数据集被用于开发基于深度卷积网络的这些对象的自动检测系统。我们提出了通过在可以注册检测到的对象的时空检测管道的对象检测流水线中的融合来利用视频中包含的时间信息,这些时间是可以注册检测到的对象的,最大限度地减少最伪正和假阴性的出现。此外,我们通过实验表明使用视频比仅使用框架对马赛克组成马赛克更有利。使用Reset-50-FPN作为骨干,我们可以分别实现0.65和0.77的F $ _1 $ -70分别对“轮胎”和“水箱”的对象级别检测,说明了正确定位潜在蚊子的系统能力育种对象。
translated by 谷歌翻译
这项研究介绍了\ textit {landslide4sense},这是一种从遥感中检测到滑坡检测的参考基准。该存储库具有3,799个图像贴片,可从Sentinel-2传感器中融合光学层,并带有数字高程模型和来自ALOS Palsar的斜率层。附加的地形信息促进了对滑坡边界的准确检测,而最近的研究表明,仅使用光学数据,这是具有挑战性的。广泛的数据集支持在滑坡检测中进行深度学习(DL)研究,以及用于系统更新滑坡库存的方法的开发和验证。基准数据集已在四个不同的时间和地理位置收集:伊伯里(2018年9月),科达古(2018年8月),戈尔卡(2015年4月)和台湾(2009年8月)。每个图像像素均标记为属于滑坡,包括各种来源和彻底的手动注释。然后,我们评估11个最先进的DL分割模型的滑坡检测性能:U-NET,RESU-NET,PSPNET,CONTECTNET,DEEPLAB-V2,DEEPLAB-V3+,FCN-8,LINKNET,FRRRN-A,FRRN-A,, FRRN-B和SQNET。所有型号均已从划痕上对每个研究区域的四分之一的补丁进行培训,并在其他三个季度的独立贴片上进行了测试。我们的实验表明,Resu-NET的表现优于其他模型,用于滑坡检测任务。我们在\ url {www.landslide4sense.org}公开获得多种源滑坡基准数据(Landslide4sense)和经过测试的DL模型,为遥感,计算机视觉和机器学习社区建立了重要的资源通常,尤其是对滑坡检测的应用。
translated by 谷歌翻译
本文介绍了一种新的,高度结果的设置,用于将计算机视觉用于环境可持续性。浓缩动物喂养行动(CAFO)(又称密集牲畜农场或“工厂农场”)产生了巨大的肥料和污染。在冬季,倾倒粪便构成了重大的环境风险,并在许多州违反了环境法。然而,联邦环境保护署(EPA)和州机构主要依靠自我报告来监视此类“土地应用”。我们的论文做出了四个贡献。首先,我们介绍了CAFO和土地应用的环境,政策和农业环境。其次,我们提供了一个新的高效率数据集(每天至每周至每周)3M/像素卫星图像,从2018 - 20年使用威斯康星州的330个CAFO,并带有手工标记的土地应用实例(n = 57,697)。第三,我们开发了一个对象检测模型,以预测土地应用和一个系统以实时进行推断。我们表明,该系统似乎有效地检测到土地应用(PR AUC = 0.93),并且我们发现了几个异常设施,这些设施似乎定期适用。最后,我们估计2021/22冬季土地应用事件的人口流行率。我们表明,土地应用的普遍性要比设施自我报告的要高得多。该系统可以由环境监管机构和利益集团使用,该系统是在过去冬天根据该系统进行的试点探访的。总体而言,我们的应用程序展示了基于AI的计算机视觉系统解决环境符合近日图像的主要问题的潜力。
translated by 谷歌翻译
作物现场边界有助于映射作物类型,预测产量,并向农民提供现场级分析。近年来,已经看到深深学习的成功应用于划定工业农业系统中的现场边界,但由于(1)需要高分辨率卫星图像的小型字段来解除界限和(2)缺乏(2)缺乏用于模型培训和验证的地面标签。在这项工作中,我们结合了转移学习和弱监督来克服这些挑战,我们展示了在印度的成功方法,我们有效地产生了10,000个新的场地标签。我们最好的型号使用1.5亿分辨率的空中客车现货图像作为投入,预先列进法国界限的最先进的神经网络,以及印度标签上的微调,以实现0.86的联盟(iou)中位数交叉口在印度。如果使用4.8M分辨率的行星扫描图像,最好的模型可以实现0.72的中位数。实验还表明,法国的预训练减少了所需的印度现场标签的数量,以便在数据集较小时尽可能多地实现给定的性能水平。这些发现表明我们的方法是划定当前缺乏现场边界数据集的世界区域中的裁剪领域的可扩展方法。我们公开发布了10,000个标签和描绘模型,以方便社区创建现场边界地图和新方法。
translated by 谷歌翻译
Fires have destructive power when they break out and affect their surroundings on a devastatingly large scale. The best way to minimize their damage is to detect the fire as quickly as possible before it has a chance to grow. Accordingly, this work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream. Object detection has made giant leaps in speed and accuracy over the last six years, making real-time detection feasible. To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector. Our focus, driven by a collaborating industrial partner, is to implement our system in an industrial warehouse setting, which is characterized by high ceilings. A drawback of traditional smoke detectors in this setup is that the smoke has to rise to a sufficient height. The AI models brought forward in this research managed to outperform these detectors by a significant amount of time, providing precious anticipation that could help to minimize the effects of fires further.
translated by 谷歌翻译
从汽车和交通检测到自动驾驶汽车系统,可以将街道对象的对象检测应用于各种用例。因此,找到最佳的对象检测算法对于有效应用它至关重要。已经发布了许多对象检测算法,许多对象检测算法比较了对象检测算法,但是很少有人比较了最新的算法,例如Yolov5,主要是侧重于街道级对象。本文比较了各种单阶段探测器算法; SSD MobilenetV2 FPN-Lite 320x320,Yolov3,Yolov4,Yolov5L和Yolov5S在实时图像中用于街道级对象检测。该实验利用了带有3,169张图像的修改后的自动驾驶汽车数据集。数据集分为火车,验证和测试;然后,使用重新处理,色相转移和噪音对其进行预处理和增强。然后对每种算法进行训练和评估。基于实验,算法根据推论时间及其精度,召回,F1得分和平均平均精度(MAP)产生了不错的结果。结果还表明,Yolov5L的映射@.5 of 0.593,MobileNetV2 FPN-Lite的推理时间最快,而其他推理时间仅为3.20ms。还发现Yolov5s是最有效的,其具有Yolov5L精度和速度几乎与MobilenetV2 FPN-Lite一样快。这表明各种算法适用于街道级对象检测,并且足够可行,可以用于自动驾驶汽车。
translated by 谷歌翻译
Insects as pollinators play a key role in ecosystem management and world food production. However, insect populations are declining, calling for a necessary global demand of insect monitoring. Existing methods analyze video or time-lapse images of insects in nature, but the analysis is challenging since insects are small objects in complex and dynamic scenes of natural vegetation. The current paper provides a dataset of primary honeybees visiting three different plant species during two months of summer-period. The dataset consists of more than 700,000 time-lapse images from multiple cameras, including more than 100,000 annotated images. The paper presents a new method pipeline for detecting insects in time-lapse RGB-images. The pipeline consists of a two-step process. Firstly, the time-lapse RGB-images are preprocessed to enhance insects in the images. We propose a new prepossessing enhancement method: Motion-Informed-enhancement. The technique uses motion and colors to enhance insects in images. The enhanced images are subsequently fed into a Convolutional Neural network (CNN) object detector. Motion-Informed-enhancement improves the deep learning object detectors You Only Look Once (YOLO) and Faster Region-based Convolutional Neural Networks (Faster R-CNN). Using Motion-Informed-enhancement the YOLO-detector improves average micro F1-score from 0.49 to 0.71, and the Faster R-CNN-detector improves average micro F1-score from 0.32 to 0.56 on the our dataset. Our datasets are published on: https://vision.eng.au.dk/mie/
translated by 谷歌翻译