我们提出了一种基于对齐的新型重定向步行控制器,允许用户探索大型和复杂的虚拟环境,同时最小化物理环境中的障碍物的碰撞次数。我们基于对齐的重定向控制器,弧形,使用户带动,使其对物理环境中的障碍物的邻近符合虚拟环境中的障碍物尽可能接近。为了在复杂环境中量化控制器的性能,我们引入了新的公制,复杂度(CR),以测量相对环境复杂性,并表征物理和虚拟环境之间的导航复杂性差异。通过广泛的仿真实验,我们表明电弧显着优于最新的最先进的控制器,其能够将用户转向无碰撞路径。我们还通过对具有许多障碍物的复杂环境中的具有稳健性的定量和定性措施来展示。我们的方法适用于任意环境,并且除了环境布局之外,没有任何用户输入或参数调整。我们在Oculus Quest头戴式显示器上实施了我们的算法,并在具有不同复杂性的环境中进行了评估其性能。我们的项目网站是在https://gamma.umd.edu/arc/提供的。
translated by 谷歌翻译
我们提出了一种新方法,用于在使用机器人运动计划中使用技术的静态和动态场景中的重定向方法来计算转向用户在物理空间中的无碰撞路径上的重定向增益。我们的第一个贡献是使用来自运动规划和配置空间的概念重定向的数学框架。该框架突出了各种几何和感知的限制,倾向于使无碰撞重定向行走困难。我们使用我们的框架提出了一个有效的解决方案,以便重定向问题使用可见性多边形的概念来计算物理环境和虚拟环境中的自由空间。可见性多边形提供了可见的整个空间的简明表示,并且因此可以从环境内的位置到用户。使用可行性空间的表示,我们应用重定向步行以将用户转向物理环境中的可见性多边形区域,该区域与用户占据虚拟环境中的可见性多边形中的区域密切相关。我们表明我们的算法能够沿着路径转向用户,这些路径导致比静态和动态场景中的现有最先进的算法显着更少的重置。我们的项目网站可在https://gamma.umd.edu/vis_poly/提供。
translated by 谷歌翻译
我们建议展开沉浸式远程呈现机器人的用户所经历的轮换,以改善用户的舒适度并减少VR疾病。通过沉浸式远程呈现,我们指的是移动机器人顶部的360 \ TextDegree〜相机的情况将视频和音频流入遥远用户遥远的远程用户佩戴的头戴式展示中。因此,它使得用户能够在机器人的位置处存在,通过转动头部并与机器人附近的人进行通信。通过展开相机框架的旋转,当机器人旋转时,用户的观点不会改变。用户只能通过在其本地设置中物理旋转来改变她的观点;由于没有相应的前庭刺激的视觉旋转是VR疾病的主要来源,预计用户的物理旋转将减少VR疾病。我们实现了展开遍历虚拟环境的模拟机器人的旋转,并将用户学习(n = 34)进行比较,将展开旋转与机器人转弯时的ViewPoint转向。我们的研究结果表明,用户发现更优选且舒适的展开转动,并降低了他们的VR疾病水平。我们还进一步提出了关于用户路径集成功能,观看方向和机器人速度和距离的主观观察到模拟人员和对象的结果。
translated by 谷歌翻译
当代机器人主义者的主要目标之一是使智能移动机器人能够在共享的人类机器人环境中平稳运行。为此目标服务的最基本必要的功能之一是在这种“社会”背景下有效的导航。结果,最近的一般社会导航的研究激增,尤其是如何处理社会导航代理之间的冲突。这些贡献介绍了各种模型,算法和评估指标,但是由于该研究领域本质上是跨学科的,因此许多相关论文是不可比较的,并且没有共同的标准词汇。这项调查的主要目标是通过引入这种通用语言,使用它来调查现有工作并突出开放问题来弥合这一差距。它首先定义社会导航的冲突,并提供其组成部分的详细分类学。然后,这项调查将现有工作映射到了本分类法中,同时使用其框架讨论论文。最后,本文提出了一些未来的研究方向和开放问题,这些方向目前正在社会导航的边界,以帮助集中于正在进行的和未来的研究。
translated by 谷歌翻译
自主驾驶的车辆必须能够以无碰撞的方式在动态和不可预测的环境中导航。到目前为止,这仅是在无人驾驶汽车和仓库装置中部分实现的,在该装置中,诸如道路,车道和交通标志之类的标记结构简化了运动计划和避免碰撞问题。我们正在为类似汽车的车辆提供一种新的控制方法,该方法基于前所未有的快节奏A*实现,该方法允许控制周期以30 Hz的频率运行。这个频率使我们能够将A*算法作为低级重型控制器,非常适合在几乎任何动态环境中导航和避免碰撞。由于有效的启发式方法由沿着目标最短路径铺设的旋转 - 翻译 - 旋转运动运动,因此我们的短期流产A*(staa*)会快速收敛,并可以尽早中止,以确保高而稳定的控制速度。尽管我们的staa*沿着最短路径扩展状态,但它会照顾与环境的碰撞检查,包括预测的移动障碍状态,并返回计算时间用完时找到的最佳解决方案。尽管计算时间有限,但由于最短路径的以下路径,我们的staa*并未被困在拐角处。在模拟和实体机器人实验中,我们证明了我们的控制方法几乎完全消除了碰撞,并且具有改进的动态窗口方法的改进版本,并具有预测性的避免功能。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
热方程驱动区域覆盖范围(HEDAC)是由潜在场的梯度引导的最先进的多机颈运动控制。特此实施有限元方法以获得Helmholtz部分微分方程的解决方案,该方程对测量运动控制的潜在字段进行了建模。这使我们能够调查任意形状的领域,并以优雅而健壮的方式包括Hedac的基本想法。对于简单的运动运动运动,通过将试剂运动用电位的梯度引导,可以成功处理障碍和边界避免限制。但是,包括其他约束,例如固定障碍物和移动障碍物的最小间隙距离以及最小的路径曲率半径,都需要控制算法的进一步交替。我们通过基于无碰撞逃生路线操纵的直接优化问题制定了一种相对简单但可靠的方法来处理这些约束的方法。这种方法提供了保证的避免碰撞机制,同时由于优化问题分配而在计算上是便宜的。在三个现实的测量场景模拟中评估了所提出的运动控制,显示了测量的有效性和控制算法的鲁棒性。此外,突出了由于定义不当的测量场景而引起的潜在操纵困难,我们提供了有关如何超越它们的指南。结果是有希望的,并表明了对自主测量和潜在的其他HEDAC利用的拟议受限的多代理运动控制的现实适用性。
translated by 谷歌翻译
模拟虚拟人群的轨迹是计算机图形中通常遇到的任务。最近的一些作品应用了强化学习方法来使虚拟代理动画,但是在基本模拟设置方面,它们通常会做出不同的设计选择。这些选择中的每一个都有合理的使用依据,因此并不明显其真正的影响是什么,以及它们如何影响结果。在这项工作中,我们从对学习绩效的影响以及根据能源效率测得的模拟的质量分析了其中一些任意选择。我们对奖励函数设计的性质进行理论分析,并经验评估使用某些观察和动作空间对各种情况的影响,并将奖励函数和能量使用作为指标。我们表明,直接使用相邻代理的信息作为观察,通常优于更广泛使用的射线播放。同样,与具有绝对观察结果的自动对照相比,使用具有以自我为中心的观察的非体力学对照倾向于产生更有效的行为。这些选择中的每一个都对结果产生重大且潜在的非平凡影响,因此研究人员应该注意选择和报告他们的工作。
translated by 谷歌翻译
在本文中,我们介绍了基于差异驱动器快照机器人和模拟的用户研究的基于倾斜的控制的实现,目的是将相同的功能带入真正的远程介绍机器人。参与者使用平衡板来控制机器人,并通过头部安装的显示器查看了虚拟环境。使用平衡板作为控制装置的主要动机源于虚拟现实(VR)疾病;即使是您自己的身体与屏幕上看到的动作相匹配的小动作也降低了视力和前庭器官之间的感觉冲突,这是大多数关于VR疾病发作的理论的核心。为了检验平衡委员会作为控制方法的假设比使用操纵杆要少可恶意,我们设计了一个用户研究(n = 32,15名女性),参与者在虚拟环境中驾驶模拟差异驱动器机器人, Nintendo Wii平衡板或操纵杆。但是,我们的预注册的主要假设不得到支持。操纵杆并没有使参与者引起更多的VR疾病,而委员会在统计学上的主观和客观性上都更加难以使用。分析开放式问题表明这些结果可能是有联系的,这意味着使用的困难似乎会影响疾病。即使在测试之前的无限训练时间也没有像熟悉的操纵杆那样容易使用。因此,使董事会更易于使用是启用其潜力的关键。我们为这个目标提供了一些可能性。
translated by 谷歌翻译
在移动机器人学中,区域勘探和覆盖率是关键能力。在大多数可用研究中,共同的假设是全球性,远程通信和集中合作。本文提出了一种新的基于群的覆盖控制算法,可以放松这些假设。该算法组合了两个元素:Swarm规则和前沿搜索算法。受到大量简单代理(例如,教育鱼,植绒鸟类,蜂拥昆虫)的自然系统的启发,第一元素使用三个简单的规则来以分布式方式维持群体形成。第二元素提供了选择有希望区域以使用涉及代理的相对位置的成本函数的最小化来探索(和覆盖)的装置。我们在不同环境中测试了我们的方法对异质和同质移动机器人的性能。我们衡量覆盖性能和允许本集团维持沟通的覆盖性能和群体形成统计数据。通过一系列比较实验,我们展示了拟议的策略在最近提出的地图覆盖方法和传统的人工潜在领域基于细胞覆盖,转变和安全路径的百分比,同时保持允许短程的形成沟通。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
为了实现成功的实地自主权,移动机器人需要自由适应环境的变化。视觉导航系统(如视觉教学和重复(VT&R)通常会假设参考轨迹周围的空间是自由的,但如果环境受阻,则路径跟踪可能会失败,或者机器人可以与先前看不见的障碍物碰撞。在这项工作中,我们为VT&R系统提供了一个局部反应控制器,允许机器人尽管对环境进行物理变化,但是尽管环境变化。我们的控制器使用本地高程映射来计算矢量表示,并输出10 Hz导航的Twist命令。它们组合在Riemannian运动策略(RMP)控制器中,该控制器需要<2 ms以在CPU上运行。我们将我们的控制器与VT&R系统集成在内的ANYMAL COMOT,并在室内杂乱的空间和大规模地下矿井中进行了测试。我们表明,当发生诸如靠近墙壁,交叉门口或穿越狭窄的走廊时,当发生视觉跟踪时,我们的本地反应控制器保持机器人安全。视频:https://youtu.be/g_awnec5awu.
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
多年来,运动规划,映射和人类轨迹预测的单独领域显着提出。然而,在提供能够使移动操纵器能够执行全身运动并考虑移动障碍物的预测运动时,文献在提供实际框架方面仍然稀疏。基于以前的优化的运动计划方法,使用距离字段遭受更新环境表示所需的高计算成本。我们证明,与从头划痕计算距离场相比,GPU加速预测的复合距离场显着降低计算时间。我们将该技术与完整的运动规划和感知框架集成,其占据动态环境中的人类的预测运动,从而实现了包含预测动作的反应性和先发制人的运动规划。为实现这一目标,我们提出并实施了一种新颖的人类轨迹预测方法,该方法结合了基于轨迹优化的运动规划的意图识别。我们在现实世界丰田人类支持机器人(HSR)上验证了我们的由Onboard Camera的现场RGB-D传感器数据验证了我们的结果框架。除了在公开的数据集提供分析外,我们还释放了牛津室内人类运动(牛津-IHM)数据集,并在人类轨迹预测中展示了最先进的性能。牛津-IHM数据集是一个人类轨迹预测数据集,人们在室内环境中的兴趣区域之间行走。静态和机器人安装的RGB-D相机都观察了用运动捕获系统跟踪的人员。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
自治系统正在成为海洋部门内无处不在和获得势头。由于运输的电气化同时发生,自主海洋船只可以降低环境影响,降低成本并提高效率。虽然仍然需要密切的监控以确保安全,但最终目标是完全自主权。一个主要的里程碑是开发一个控制系统,这足以处理任何也稳健和可靠的天气和遇到。此外,控制系统必须遵守防止海上碰撞的国际法规,以便与人类水手进行成功互动。由于Colregs被编写为人类思想来解释,因此它们以暧昧的散文写成,因此不能获得机器可读或可核实。由于这些挑战和各种情况进行了解决,古典模型的方法证明了实现和计算沉重的复杂性。在机器学习(ML)内,深增强学习(DRL)对广泛的应用表现出了很大的潜力。 DRL的无模型和自学特性使其成为自治船只的有希望的候选人。在这项工作中,使用碰撞风险理论将Colregs的子集合在于基于DRL的路径和障碍物避免系统。由此产生的自主代理在训练场景中的训练场景,孤立的遇难情况和基于AIS的真实情景模拟中动态地插值。
translated by 谷歌翻译
在过去的十年中,自动驾驶航空运输车辆引起了重大兴趣。这是通过空中操纵器和新颖的握手的技术进步来实现这一目标的。此外,改进的控制方案和车辆动力学能够更好地对有效载荷进行建模和改进的感知算法,以检测无人机(UAV)环境中的关键特征。在这项调查中,对自动空中递送车辆的技术进步和开放研究问题进行了系统的审查。首先,详细讨论了各种类型的操纵器和握手,以及动态建模和控制方法。然后,讨论了降落在静态和动态平台上的。随后,诸如天气状况,州估计和避免碰撞之类的风险以确保安全过境。最后,调查了交付的UAV路由,该路由将主题分为两个领域:无人机操作和无人机合作操作。
translated by 谷歌翻译
我们提出了一种生成,预测和使用时空占用网格图(SOGM)的方法,该方法嵌入了真实动态场景的未来语义信息。我们提出了一个自动标记的过程,该过程从嘈杂的真实导航数据中创建SOGM。我们使用3D-2D馈电体系结构,经过训练,可以预测SOGM的未来时间步骤,并给定3D激光镜框架作为输入。我们的管道完全是自我监督的,从而为真正的机器人提供了终身学习。该网络由一个3D后端组成,该后端提取丰富的特征并实现了激光镜框架的语义分割,以及一个2D前端,可预测SOGM表示中嵌入的未来信息,从而有可能捕获房地产的复杂性和不确定性世界多代理,多未来的互动。我们还设计了一个导航系统,该导航系统在计划中使用这些预测的SOGM在计划中,之后它们已转变为时空风险图(SRMS)。我们验证导航系统在模拟中的能力,在真实的机器人上对其进行验证,在各种情况下对真实数据进行研究SOGM预测,并提供一种新型的室内3D LIDAR数据集,该数据集在我们的实验中收集,其中包括我们的自动注释。
translated by 谷歌翻译
The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed.
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译