我们在盒子值上相关的分布中重新审视经典的潘多拉盒(PB)问题。 ARXIV的最新工作:1911.01632获得了限制性类别的策略量持续近似算法,该策略以固定顺序访问框。在这项工作中,我们研究了近似最佳策略的复杂性,该策略可以根据迄今为止所看到的值适应下一步访问哪个框。我们的主要结果确定了PB的近似值等效性与研究良好的统一决策树(UDT)问题,从随机优化和Min-Sum Set封面的变体($ \ MATHCAL {MSSC} _F $)问题。对于支持$ M $的分布,UDT承认$ \ log M $近似值,而多项式时间的恒定因子近似是一个长期的开放问题,但在次指数时间内可以实现恒定的因子近似值(ARXIV:1906.11385)。我们的主要结果意味着PB和$ \ MATHCAL {MSSC} _F $具有相同的属性。我们还研究了一个案例,使价值分布更简洁地作为$ m $产品分布的混合物。这个问题再次与最佳决策树的嘈杂变体有关,该变体更具挑战性。我们给出一个恒定的因子近似值,该近似时间$ n^{\ tilde o(m^2/\ varepsilon^2)} $当每个盒子上的混合组件在电视距离中相同或通过$ \ varepsilon $在电视距离中相同或分开。
translated by 谷歌翻译
我们考虑自适应 - 调节功能的最低成本覆盖率的问题,并提供4(ln Q+1) - approximation算法,其中Q是目标值。该结合几乎是最好的,因为该问题不能接受比LN Q更好的近似值(除非p = np)。我们的结果是该问题的第一个O(LN Q) - Approximation算法。以前,o(ln q)近似算法仅假设独立项目或单位成本项目是已知的。此外,我们的结果很容易扩展到想要同时覆盖多个自适应 - 调节函数的设置:我们获得了此概括的第一个近似算法。
translated by 谷歌翻译
公司跨行业对机器学习(ML)的快速传播采用了重大的监管挑战。一个这样的挑战就是可伸缩性:监管机构如何有效地审核这些ML模型,以确保它们是公平的?在本文中,我们启动基于查询的审计算法的研究,这些算法可以以查询有效的方式估算ML模型的人口统计学率。我们提出了一种最佳的确定性算法,以及具有可比保证的实用随机,甲骨文效率的算法。此外,我们进一步了解了随机活动公平估计算法的最佳查询复杂性。我们对主动公平估计的首次探索旨在将AI治理置于更坚定的理论基础上。
translated by 谷歌翻译
我们提出了改进的算法,并为身份测试$ n $维分布的问题提供了统计和计算下限。在身份测试问题中,我们将作为输入作为显式分发$ \ mu $,$ \ varepsilon> 0 $,并访问对隐藏分布$ \ pi $的采样甲骨文。目标是区分两个分布$ \ mu $和$ \ pi $是相同的还是至少$ \ varepsilon $ -far分开。当仅从隐藏分布$ \ pi $中访问完整样本时,众所周知,可能需要许多样本,因此以前的作品已经研究了身份测试,并额外访问了各种有条件采样牙齿。我们在这里考虑一个明显弱的条件采样甲骨文,称为坐标Oracle,并在此新模型中提供了身份测试问题的相当完整的计算和统计表征。我们证明,如果一个称为熵的分析属性为可见分布$ \ mu $保留,那么对于任何使用$ \ tilde {o}(n/\ tilde {o}),有一个有效的身份测试算法Varepsilon)$查询坐标Oracle。熵的近似张力是一种经典的工具,用于证明马尔可夫链的最佳混合时间边界用于高维分布,并且最近通过光谱独立性为许多分布族建立了最佳的混合时间。我们将算法结果与匹配的$ \ omega(n/\ varepsilon)$统计下键进行匹配的算法结果补充,以供坐标Oracle下的查询数量。我们还证明了一个计算相变:对于$ \ {+1,-1,-1 \}^n $以上的稀疏抗抗铁磁性模型,在熵失败的近似张力失败的状态下,除非RP = np,否则没有有效的身份测试算法。
translated by 谷歌翻译
K-MEDIAN和K-MEACE是聚类算法的两个最受欢迎的目标。尽管有密集的努力,但对这些目标的近似性很好地了解,特别是在$ \ ell_p $ -metrics中,仍然是一个重大的开放问题。在本文中,我们在$ \ ell_p $ -metrics中显着提高了文献中已知的近似因素的硬度。我们介绍了一个名为Johnson覆盖假说(JCH)的新假设,这大致断言设定系统上的良好的Max K-Coverage问题难以近似于1-1 / e,即使是成员图形设置系统是Johnson图的子图。然后,我们展示了Cohen-Addad和Karthik引入的嵌入技术的概括(Focs'19),JCH意味着K-MEDIAN和K-MERION在$ \ ell_p $ -metrics中的近似结果的近似值的硬度为近距离对于一般指标获得的人。特别地,假设JCH我们表明很难近似K-Meator目标:$ \ Bullet $离散情况:$ \ ell_1 $ 3.94 - $ \ ell_2中的1.73因素为1.73倍$$ - 这分别在UGC下获得了1.56和1.17的先前因子。 $ \ bullet $持续案例:$ \ ell_1 $ 2210 - $ \ ell_2 $的$ \ ell_1 $ 210。$ \ ell_2 $-metric;这在UGC下获得的$ \ ell_2 $的$ \ ell_2 $的先前因子提高了1.07。对于K-Median目标,我们还获得了类似的改进。此外,我们使用Dinure等人的工作证明了JCH的弱版本。 (Sicomp'05)在超图顶点封面上,恢复Cohen-Addad和Karthik(Focs'19 Focs'19)上面的所有结果(近)相同的不可识别因素,但现在在标准的NP $ \ NEQ $ P假设下(代替UGC)。
translated by 谷歌翻译
大多数-AT是确定联合正常形式(CNF)中输入$ N $的最低价公式的问题至少为2 ^ {n-1} $令人满意的作业。在对概率规划和推论复杂性的各种AI社区中,广泛研究了多数饱和问题。虽然大多数饱满为期40多年来,但自然变体的复杂性保持开放:大多数 - $ k $ SAT,其中输入CNF公式仅限于最多$ k $的子句宽度。我们证明,每辆$ k $,大多数 - $ k $ sat是在p的。事实上,对于任何正整数$ k $和ratic $ \ rho \ in(0,1)$ in(0,1)$与有界分比者,我们给出了算法这可以确定给定的$ k $ -cnf是否至少有$ \ rho \ cdot 2 ^ n $令人满意的分配,在确定性线性时间(而先前的最着名的算法在指数时间中运行)。我们的算法对计算复杂性和推理的复杂性具有有趣的积极影响,显着降低了相关问题的已知复杂性,例如E-Maj-$ K $ Sat和Maj-Maj- $ K $ Sat。在我们的方法中,通过提取在$ k $ -cnf的相应设置系统中发现的向日葵,可以通过提取向日葵来解决阈值计数问题的有效方法。我们还表明,大多数 - $ k $ sat的易腐烂性有些脆弱。对于密切相关的gtmajority-sat问题(我们询问给定公式是否超过2 ^ {n-1} $满足分配),这已知是pp-cleanting的,我们表明gtmajority-$ k $ sat在p for $ k \ le 3 $,但为$ k \ geq 4 $完成np-cleante。这些结果是违反直觉的,因为这些问题的“自然”分类将是PP完整性,因为GTMAJority的复杂性存在显着差异 - $ k $ SAT和MOSTION- $ K $ SAT为所有$ k \ ge 4 $。
translated by 谷歌翻译
$ k $ -means和$ k $ -median集群是强大的无监督机器学习技术。但是,由于对所有功能的复杂依赖性,解释生成的群集分配是挑战性的。 Moshkovitz,Dasgupta,Rashtchian和Frost [ICML 2020]提出了一个优雅的可解释$ K $ -means和$ K $ -Median聚类型号。在此模型中,具有$ k $叶子的决策树提供了集群中的数据的直接表征。我们研究了关于可解释的聚类的两个自然算法问题。 (1)对于给定的群集,如何通过使用$ k $叶的决策树找到“最佳解释”? (2)对于一套给定的点,如何找到一个以美元的决策树,最小化$ k $ -means / median目标的可解释的聚类?要解决第一个问题,我们介绍了一个新的可解释群集模型。我们的型号受到强大统计数据的异常值概念的启发,是以下情况。我们正在寻求少数积分(异常值),其删除使现有的聚类良好可解释。为了解决第二个问题,我们开始研究Moshkovitz等人的模型。从多元复杂性的角度来看。我们严格的算法分析揭示了参数的影响,如数据的输入大小,尺寸,异常值的数量,簇数,近似比,呈现可解释的聚类的计算复杂度。
translated by 谷歌翻译
我们研究了Massart噪声存在下PAC学习半空间的复杂性。在这个问题中,我们得到了I.I.D.标记的示例$(\ mathbf {x},y)\ in \ mathbb {r}^n \ times \ {\ pm 1 \} $,其中$ \ mathbf {x} $的分布是任意的,标签$ y y y y y y。 $是$ f(\ mathbf {x})$的MassArt损坏,对于未知的半空间$ f:\ mathbb {r}^n \ to \ to \ {\ pm 1 \} $,带有翻转概率$ \ eta(\ eta)(\ eta) Mathbf {x})\ leq \ eta <1/2 $。学习者的目的是计算一个小于0-1误差的假设。我们的主要结果是该学习问题的第一个计算硬度结果。具体而言,假设学习错误(LWE)问题(LWE)问题的(被认为是广泛的)超指定时间硬度,我们表明,即使最佳,也没有多项式时间MassArt Halfspace学习者可以更好地达到错误的错误,即使是最佳0-1错误很小,即$ \ mathrm {opt} = 2^{ - \ log^{c}(n)} $对于任何通用常数$ c \ in(0,1)$。先前的工作在统计查询模型中提供了定性上类似的硬度证据。我们的计算硬度结果基本上可以解决Massart Halfspaces的多项式PAC可学习性,这表明对该问题的已知有效学习算法几乎是最好的。
translated by 谷歌翻译
The problem of learning threshold functions is a fundamental one in machine learning. Classical learning theory implies sample complexity of $O(\xi^{-1} \log(1/\beta))$ (for generalization error $\xi$ with confidence $1-\beta$). The private version of the problem, however, is more challenging and in particular, the sample complexity must depend on the size $|X|$ of the domain. Progress on quantifying this dependence, via lower and upper bounds, was made in a line of works over the past decade. In this paper, we finally close the gap for approximate-DP and provide a nearly tight upper bound of $\tilde{O}(\log^* |X|)$, which matches a lower bound by Alon et al (that applies even with improper learning) and improves over a prior upper bound of $\tilde{O}((\log^* |X|)^{1.5})$ by Kaplan et al. We also provide matching upper and lower bounds of $\tilde{\Theta}(2^{\log^*|X|})$ for the additive error of private quasi-concave optimization (a related and more general problem). Our improvement is achieved via the novel Reorder-Slice-Compute paradigm for private data analysis which we believe will have further applications.
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
大部分强化学习理论都建立在计算上难以实施的甲板上。专门用于在部分可观察到的马尔可夫决策过程(POMDP)中学习近乎最佳的政策,现有算法要么需要对模型动态(例如确定性过渡)做出强有力的假设,要么假设访问甲骨文作为解决艰难的计划或估算问题的访问子例程。在这项工作中,我们在合理的假设下开发了第一个用于POMDP的无Oracle学习算法。具体而言,我们给出了一种用于在“可观察” pomdps中学习的准化性时间端到端算法,其中可观察性是一个假设,即对国家而言,分离良好的分布诱导了分离良好的分布分布而不是观察。我们的技术规定了在不确定性下使用乐观原则来促进探索的更传统的方法,而是在构建策略涵盖的情况下提供了一种新颖的barycentric跨度应用。
translated by 谷歌翻译
我们考虑带有背包的土匪(从此以后,BWK),这是一种在供应/预算限制下的多臂土匪的通用模型。特别是,强盗算法需要解决一个众所周知的背包问题:找到最佳的物品包装到有限尺寸的背包中。 BWK问题是众多激励示例的普遍概括,范围从动态定价到重复拍卖,再到动态AD分配,再到网络路由和调度。尽管BWK的先前工作集中在随机版本上,但我们开创了可以在对手身上选择结果的另一个极端。与随机版本和“经典”对抗土匪相比,这是一个更加困难的问题,因为遗憾的最小化不再可行。相反,目的是最大程度地减少竞争比率:基准奖励与算法奖励的比率。我们设计了一种具有竞争比O(log t)的算法,相对于动作的最佳固定分布,其中T是时间范围;我们还证明了一个匹配的下限。关键的概念贡献是对问题的随机版本的新观点。我们为随机版本提出了一种新的算法,该算法是基于重复游戏中遗憾最小化的框架,并且与先前的工作相比,它具有更简单的分析。然后,我们为对抗版本分析此算法,并将其用作求解后者的子例程。
translated by 谷歌翻译
Arthur和Vassilvitskii的著名$ K $ -MEANS ++算法[SODA 2007]是解决实践中$ K $ - 英镑问题的最流行方式。该算法非常简单:它以随机的方式均匀地对第一个中心进行采样,然后始终将每个$ K-1 $中心的中心取样与迄今为止最接近最接近中心的平方距离成比例。之后,运行了劳埃德的迭代算法。已知$ k $ -Means ++算法可以返回预期的$ \ theta(\ log K)$近似解决方案。在他们的开创性工作中,Arthur和Vassilvitskii [Soda 2007]询问了其以下\ emph {greedy}的保证:在每一步中,我们采样了$ \ ell $候选中心,而不是一个,然后选择最小化新的中心成本。这也是$ k $ -Means ++在例如中实现的方式。流行的Scikit-Learn库[Pedregosa等人; JMLR 2011]。我们为贪婪的$ k $ -Means ++提供几乎匹配的下限和上限:我们证明它是$ o(\ ell^3 \ log^3 k)$ - 近似算法。另一方面,我们证明了$ \ omega的下限(\ ell^3 \ log^3 k / \ log^2(\ ell \ log k))$。以前,只有$ \ omega(\ ell \ log k)$下限是已知的[bhattacharya,eube,r \“ ogllin,schmidt; esa 2020),并且没有已知的上限。
translated by 谷歌翻译
我们研究动态算法,以便在$ N $插入和删除流中最大化单调子模块功能的问题。我们显示任何维护$(0.5+ epsilon)$ - 在基数约束下的近似解决方案的算法,对于任何常数$ \ epsilon> 0 $,必须具有$ \ mathit {polynomial} $的摊销查询复杂性$ n $。此外,需要线性摊销查询复杂性,以维持0.584美元 - 批量的解决方案。这与近期[LMNF + 20,MON20]的最近动态算法相比,达到$(0.5- \ epsilon)$ - 近似值,与$ \ mathsf {poly} \ log(n)$摊销查询复杂性。在正面,当流是仅插入的时候,我们在基数约束下的问题和近似的Matroid约束下提供有效的算法,近似保证$ 1-1 / e-\ epsilon $和摊销查询复杂性$ \ smash {o (\ log(k / \ epsilon)/ \ epsilon ^ 2)} $和$ \ smash {k ^ {\ tilde {o}(1 / \ epsilon ^ 2)} \ log n} $,其中$ k $表示基数参数或Matroid的等级。
translated by 谷歌翻译
我们重新审视耐受分发测试的问题。也就是说,给出来自未知分发$ P $超过$ \ {1,\ dots,n \} $的样本,它是$ \ varepsilon_1 $ -close到或$ \ varepsilon_2 $ -far从引用分发$ q $(总变化距离)?尽管过去十年来兴趣,但在极端情况下,这个问题很好。在无噪声设置(即,$ \ varepsilon_1 = 0 $)中,样本复杂性是$ \ theta(\ sqrt {n})$,强大的域大小。在频谱的另一端时,当$ \ varepsilon_1 = \ varepsilon_2 / 2 $时,样本复杂性跳转到勉强su​​blinear $ \ theta(n / \ log n)$。然而,非常少于中级制度。我们充分地表征了分发测试中的公差价格,作为$ N $,$ varepsilon_1 $,$ \ varepsilon_2 $,最多一个$ \ log n $ factor。具体来说,我们显示了\ [\ tilde \ theta \ left的样本复杂性(\ frac {\ sqrt {n}} {\ varepsilon_2 ^ {2}} + \ frac {n} {\ log n} \ cdot \ max \左\ {\ frac {\ varepsilon_1} {\ varepsilon_2 ^ 2},\ left(\ frac {\ varepsilon_1} {\ varepsilon_2 ^ 2} \右)^ {\!\!\!2} \ \ \} \右) ,\]提供两个先前已知的案例之间的顺利折衷。我们还为宽容的等价测试问题提供了类似的表征,其中$ p $和$ q $均未赘述。令人惊讶的是,在这两种情况下,对样本复杂性的主数量是比率$ \ varepsilon_1 / varepsilon_2 ^ 2 $,而不是更直观的$ \ varepsilon_1 / \ varepsilon_2 $。特别是技术兴趣是我们的下限框架,这涉及在以往的工作中处理不对称所需的新颖近似性理论工具,从而缺乏以前的作品。
translated by 谷歌翻译
我们在高斯分布下使用Massart噪声与Massart噪声进行PAC学习半个空间的问题。在Massart模型中,允许对手将每个点$ \ mathbf {x} $的标签与未知概率$ \ eta(\ mathbf {x})\ leq \ eta $,用于某些参数$ \ eta \ [0,1 / 2] $。目标是找到一个假设$ \ mathrm {opt} + \ epsilon $的错误分类错误,其中$ \ mathrm {opt} $是目标半空间的错误。此前已经在两个假设下研究了这个问题:(i)目标半空间是同质的(即,分离超平面通过原点),并且(ii)参数$ \ eta $严格小于$ 1/2 $。在此工作之前,当除去这些假设中的任何一个时,不知道非增长的界限。我们研究了一般问题并建立以下内容:对于$ \ eta <1/2 $,我们为一般半个空间提供了一个学习算法,采用样本和计算复杂度$ d ^ {o_ {\ eta}(\ log(1 / \ gamma) )))}} \ mathrm {poly}(1 / \ epsilon)$,其中$ \ gamma = \ max \ {\ epsilon,\ min \ {\ mathbf {pr} [f(\ mathbf {x})= 1], \ mathbf {pr} [f(\ mathbf {x})= -1] \} \} $是目标半空间$ f $的偏差。现有的高效算法只能处理$ \ gamma = 1/2 $的特殊情况。有趣的是,我们建立了$ d ^ {\ oomega(\ log(\ log(\ log(\ log))}}的质量匹配的下限,而是任何统计查询(SQ)算法的复杂性。对于$ \ eta = 1/2 $,我们为一般半空间提供了一个学习算法,具有样本和计算复杂度$ o_ \ epsilon(1)d ^ {o(\ log(1 / epsilon))} $。即使对于均匀半空间的子类,这个结果也是新的;均匀Massart半个空间的现有算法为$ \ eta = 1/2 $提供可持续的保证。我们与D ^ {\ omega(\ log(\ log(\ log(\ log(\ epsilon))} $的近似匹配的sq下限补充了我们的上限,这甚至可以为同类半空间的特殊情况而保持。
translated by 谷歌翻译
Models for the processes by which ideas and influence propagate through a social network have been studied in a number of domains, including the diffusion of medical and technological innovations, the sudden and widespread adoption of various strategies in game-theoretic settings, and the effects of "word of mouth" in the promotion of new products. Motivated by the design of viral marketing strategies, Domingos and Richardson posed a fundamental algorithmic problem for such social network processes: if we can try to convince a subset of individuals to adopt a new product or innovation, and the goal is to trigger a large cascade of further adoptions, which set of individuals should we target?We consider this problem in several of the most widely studied models in social network analysis. The optimization problem of selecting the most influential nodes is NP-hard here. The two conference papers upon which this article is based (KDD 2003 and ICALP 2005) provide the first provable approximation guarantees for efficient algorithms. Using an The present article is an expanded version of two conference papers [51,52], which appeared in KDD 2003 and ICALP 2005, respectively.
translated by 谷歌翻译
我们研究了测试有序域上的离散概率分布是否是指定数量的垃圾箱的直方图。$ k $的简洁近似值的最常见工具之一是$ k $ [n] $,是概率分布,在一组$ k $间隔上是分段常数的。直方图测试问题如下:从$ [n] $上的未知分布中给定样品$ \ mathbf {p} $,我们想区分$ \ mathbf {p} $的情况从任何$ k $ - 组织图中,总变化距离的$ \ varepsilon $ -far。我们的主要结果是针对此测试问题的样本接近最佳和计算有效的算法,以及几乎匹配的(在对数因素内)样品复杂性下限。具体而言,我们表明直方图测试问题具有样品复杂性$ \ widetilde \ theta(\ sqrt {nk} / \ varepsilon + k / \ varepsilon^2 + \ sqrt {n} / \ varepsilon^2)$。
translated by 谷歌翻译
我们考虑测定点过程(DPP)的产物,该点过程,其概率质量与多矩阵的主要成本的产物成比例,作为DPP的天然有希望的推广。我们研究计算其归一化常量的计算复杂性,这是最重要的概率推理任务。我们的复杂性 - 理论结果(差不多)排除了该任务的有效算法的存在,除非输入矩阵被迫具有有利的结构。特别是,我们证明了以下内容:(1)计算$ \ sum_s \ det({\ bf a} _ {s,s,s})^ p $完全针对每个(固定)阳性甚至整数$ p $ up-hard和Mod $ _3 $ p-hard,它给Kulesza和Taskar提出的打开问题给出了否定答案。 (2)$ \ sum_s \ det({\ bf a} _ {s,s})\ det({\ bf b} _ {s,s})\ det({\ bf c} _ {s,s} )$ IS难以在2 ^ {o(| i | i | ^ {1- \ epsilon})} $或$ 2 ^ {o(n ^ {1 / epsilon})} $的任何一个$ \ epsilon> 0 $,其中$ | i | $是输入大小,$ n $是输入矩阵的顺序。这种结果比Gillenwater导出的两个矩阵的#P硬度强。 (3)有$ k ^ {o(k)} n ^ {o(1)} $ - 计算$ \ sum_s \ det的时间算法({\ bf a} _ {s,s})\ det( {\ bf b} _ {s,s})$,其中$ k $是$ \ bf a $和$ \ bf b $的最大等级,或者由$ \ bf a $的非零表项形成的图表的树宽和$ \ bf b $。据说这种参数化算法是固定参数的易解。这些结果可以扩展到固定尺寸的情况。此外,我们介绍了两个固定参数批量算法的应用程序给定矩阵$ \ bf a $ treewidth $ w $:(4)我们可以计算$ 2 ^ {\ frac {n} {2p-1} $ - 近似值到$ \ sum_s \ det({\ bf a} _ {s,s})^ p $ for任何分数$ p> 1 $以$ w ^ {o(wp)} n ^ {o(1)} $时间。 (5)我们可以在$ w ^ {o(w \ sqrt n)} n ^ {
translated by 谷歌翻译
由于机器学习,统计和科学的应用,多边缘最佳运输(MOT)引起了极大的兴趣。但是,在大多数应用中,MOT的成功受到缺乏有效算法的严重限制。实际上,MOT一般需要在边际K及其支撑大小n的数量中指数时间n。本文开发了一个关于“结构”在poly(n,k)时间中可溶解的一般理论。我们开发了一个统一的算法框架,用于通过表征不同算法所需的“结构”来解决poly(n,k)时间中的MOT,这是根据双重可行性甲骨文的简单变体所需的。该框架有几个好处。首先,它使我们能够证明当前是最流行的MOT算法的Sinkhorn算法比其他算法要在poly(n,k)时间中求解MOT所需的结构更严格。其次,我们的框架使得为给定的MOT问题开发poly(n,k)时间算法变得更加简单。特别是(大约)解决双重可行性Oracle是必要和足够的 - 这更适合标准算法技术。我们通过为三个通用类成本结构类别的poly(n,k)时间算法开发poly(n,k)时间算法来说明这种易用性:(1)图形结构; (2)设定优化结构; (3)低阶和稀疏结构。对于结构(1),我们恢复了Sindhorn具有poly(n,k)运行时的已知结果;此外,我们为计算精确且稀疏的解决方案提供了第一个poly(n,k)时间算法。对于结构(2) - (3),我们给出了第一个poly(n,k)时间算法,甚至用于近似计算。这三个结构一起涵盖了许多MOT的当前应用。
translated by 谷歌翻译