在本文中,我们会查看AutoEncoders。本文涵盖了自动化者的数学和基本概念。我们将讨论它们是什么,典型用例的限制,我们将看一些例子。我们将从AutoEncoders的一般介绍开始,我们将讨论激活函数在输出层和损耗功能中的作用。然后,我们将讨论重建错误是什么。最后,我们将看待典型的应用,作为减少,分类,去噪和异常检测。本文包含2021年给出的AutoEncoders上的Phd级讲义的音符。
translated by 谷歌翻译
这是一门专门针对STEM学生开发的介绍性机器学习课程。我们的目标是为有兴趣的读者提供基础知识,以在自己的项目中使用机器学习,并将自己熟悉术语作为进一步阅读相关文献的基础。在这些讲义中,我们讨论受监督,无监督和强化学习。注释从没有神经网络的机器学习方法的说明开始,例如原理分析,T-SNE,聚类以及线性回归和线性分类器。我们继续介绍基本和先进的神经网络结构,例如密集的进料和常规神经网络,经常性的神经网络,受限的玻尔兹曼机器,(变性)自动编码器,生成的对抗性网络。讨论了潜在空间表示的解释性问题,并使用梦和对抗性攻击的例子。最后一部分致力于加强学习,我们在其中介绍了价值功能和政策学习的基本概念。
translated by 谷歌翻译
Autoencoders are widely used in outlier detection due to their superiority in handling high-dimensional and nonlinear datasets. The reconstruction of any dataset by the autoencoder can be considered as a complex regression process. In regression analysis, outliers can usually be divided into high leverage points and influential points. Although the autoencoder has shown good results for the identification of influential points, there are still some problems when detect high leverage points. Through theoretical derivation, we found that most outliers are detected in the direction corresponding to the worst-recovered principal component, but in the direction of the well-recovered principal components, the anomalies are often ignored. We propose a new loss function which solve the above deficiencies in outlier detection. The core idea of our scheme is that in order to better detect high leverage points, we should suppress the complete reconstruction of the dataset to convert high leverage points into influential points, and it is also necessary to ensure that the differences between the eigenvalues of the covariance matrix of the original dataset and their corresponding reconstructed results in the direction of each principal component are equal. Besides, we explain the rationality of our scheme through rigorous theoretical derivation. Finally, our experiments on multiple datasets confirm that our scheme significantly improves the accuracy of outlier detection.
translated by 谷歌翻译
当应用于具有高级别方差的目标类别的复杂数据集时,基于异常检测的基于异常检测的方法趋于下降。类似于转移学习中使用的自学学习的想法,许多域具有类似的未标记数据集,可以作为分发超出样本的代理。在本文中,我们介绍了来自类似域的未标记数据的潜在不敏感的AutoEncoder(LIS-AE)用作阳性示例以形成常规AutoEncoder的潜在层(瓶颈),使得它仅能够重建一个任务。我们为拟议的培训流程和损失职能提供了理论理的理由以及广泛的消融研究,突出了我们模型的重要方面。我们在多个异常检测设置中测试我们的模型,呈现定量和定性分析,展示了我们对异常检测任务模型的显着性能改进。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
We explore an original strategy for building deep networks, based on stacking layers of denoising autoencoders which are trained locally to denoise corrupted versions of their inputs. The resulting algorithm is a straightforward variation on the stacking of ordinary autoencoders. It is however shown on a benchmark of classification problems to yield significantly lower classification error, thus bridging the performance gap with deep belief networks (DBN), and in several cases surpassing it. Higher level representations learnt in this purely unsupervised fashion also help boost the performance of subsequent SVM classifiers. Qualitative experiments show that, contrary to ordinary autoencoders, denoising autoencoders are able to learn Gabor-like edge detectors from natural image patches and larger stroke detectors from digit images. This work clearly establishes the value of using a denoising criterion as a tractable unsupervised objective to guide the learning of useful higher level representations.
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
半监督异常检测旨在使用在正常数据上培训的模型来检测来自正常样本的异常。随着近期深度学习的进步,研究人员设计了高效的深度异常检测方法。现有作品通常使用神经网络将数据映射到更具内容性的表示中,然后应用异常检测算法。在本文中,我们提出了一种方法,DASVDD,它共同学习AutoEncoder的参数,同时最小化其潜在表示上的封闭超球的音量。我们提出了一个异常的分数,它是自动化器的重建误差和距离潜在表示中封闭边距中心的距离的组合。尽量减少这种异常的分数辅助我们在培训期间学习正常课程的潜在分布。包括异常分数中的重建错误确保DESVDD不受常见的极度崩溃问题,因为DESVDD模型不会收敛到映射到潜在表示中的恒定点的常量点。几个基准数据集上的实验评估表明,该方法优于常用的最先进的异常检测算法,同时在不同的异常类中保持鲁棒性能。
translated by 谷歌翻译
随着现代世界的不可阻碍的数字化,技术领域的每个子集都会不断发展。这样的子集就是如此受欢迎的数字图像。图像并不总是像您希望的那样在视觉上令人愉悦或清晰,并且经常被噪音扭曲或掩盖。随着岁月的流逝,已经出现了许多增强图像的技术,所有这些技术都具有各自的利弊。在本文中,我们研究了一种特殊的技术,该技术在通常被称为自动编码器的神经网络模型的帮助下完成了这项任务。我们为模型构建不同的体系结构,并比较结果,以决定最适合该任务的架构。简短地讨论了模型的特征和工作,这可以帮助为将来的研究树立途径。
translated by 谷歌翻译
几个世纪以来,科学家一直观察到自然要了解支配物理世界的法律。将观察变成身体理解的传统过程很慢。构建和测试不完善的模型以解释数据中的关系。强大的新算法可以使计算机通过观察图像和视频来学习物理。受这个想法的启发,而不是使用物理量训练机器学习模型,我们使用了图像,即像素信息。对于这项工作和概念证明,感兴趣的物理学是风向的空间模式。这些现象包括风水沙丘和火山灰沉积,野火烟雾和空气污染羽状的特征。我们使用空间沉积模式的计算机模型仿真来近似假设成像设备的图像,其输出为红色,绿色和蓝色(RGB)颜色图像,通道值范围为0到255。在本文中,我们探索深度卷积神经网络基于基于风向的空间模式的关系,通常在地球科学中发生,并降低其尺寸。使用编码器降低数据维度大小,可以训练将地理和气象标量输入数量连接到编码空间的深层,完全连接的神经网络模型。一旦实现了这一目标,使用解码器重建了完整的空间模式。我们在污染源的空间沉积图像上证明了这种方法,其中编码器将维度压缩到原始大小的0.02%,并且测试数据上的完整预测模型性能的精度为92%。
translated by 谷歌翻译
异常(或异常值)在现实世界的经验观察中普遍存在,并且潜在地掩盖了重要的基础结构。准确识别异常样品对于下游数据分析任务的成功至关重要。为了自动识别异常,我们提出了概率鲁棒性自动编码器(PRAE)。 PRAE的目的是同时删除异常值并确定嵌入式样品的低维表示。我们首先提出了强大的自动编码器(RAE)目标,作为将数据拆分为嵌入式和离群值的最小化问题。我们的目标旨在排除离群值,同时包括可以使用自动编码器(AE)有效重建的样本(Inliers)的子集。 RAE最小化自动编码器的重建误差,同时合并尽可能多的样品。可以通过减去$ \ ell_0 $ norm对重建项中所选样本的数量进行$ \ ell_0 $ norm来制定这一点。不幸的是,这导致了一个棘手的组合问题。因此,我们提出了两种RAE的概率放松,它们是可区分的,可以减轻组合搜索的需求。我们证明,解决PRAE问题的解决方案等效于RAE的解决方案。我们使用合成数据来表明PRAE可以准确地删除广泛污染水平的异常值。最后,我们证明,使用PRAE进行异常检测会导致各种基准数据集中的最新结果。
translated by 谷歌翻译
These notes were compiled as lecture notes for a course developed and taught at the University of the Southern California. They should be accessible to a typical engineering graduate student with a strong background in Applied Mathematics. The main objective of these notes is to introduce a student who is familiar with concepts in linear algebra and partial differential equations to select topics in deep learning. These lecture notes exploit the strong connections between deep learning algorithms and the more conventional techniques of computational physics to achieve two goals. First, they use concepts from computational physics to develop an understanding of deep learning algorithms. Not surprisingly, many concepts in deep learning can be connected to similar concepts in computational physics, and one can utilize this connection to better understand these algorithms. Second, several novel deep learning algorithms can be used to solve challenging problems in computational physics. Thus, they offer someone who is interested in modeling a physical phenomena with a complementary set of tools.
translated by 谷歌翻译
Generative Adversarial Networks (GANs) were introduced by Goodfellow in 2014, and since then have become popular for constructing generative artificial intelligence models. However, the drawbacks of such networks are numerous, like their longer training times, their sensitivity to hyperparameter tuning, several types of loss and optimization functions and other difficulties like mode collapse. Current applications of GANs include generating photo-realistic human faces, animals and objects. However, I wanted to explore the artistic ability of GANs in more detail, by using existing models and learning from them. This dissertation covers the basics of neural networks and works its way up to the particular aspects of GANs, together with experimentation and modification of existing available models, from least complex to most. The intention is to see if state of the art GANs (specifically StyleGAN2) can generate album art covers and if it is possible to tailor them by genre. This was attempted by first familiarizing myself with 3 existing GANs architectures, including the state of the art StyleGAN2. The StyleGAN2 code was used to train a model with a dataset containing 80K album cover images, then used to style images by picking curated images and mixing their styles.
translated by 谷歌翻译
在运行时检测新颖类的问题称为开放式检测,对于各种现实世界应用,例如医疗应用,自动驾驶等。在深度学习的背景下进行开放式检测涉及解决两个问题:(i):(i)必须将输入图像映射到潜在表示中,该图像包含足够的信息来检测异常值,并且(ii)必须学习一个可以从潜在表示中提取此信息以识别异常情况的异常评分函数。深度异常检测方法的研究缓慢进展。原因之一可能是大多数论文同时引入了新的表示学习技术和新的异常评分方法。这项工作的目的是通过提供分别衡量表示学习和异常评分的有效性的方法来改善这种方法。这项工作做出了两项方法论贡献。首先是引入甲骨文异常检测的概念,以量化学习潜在表示中可用的信息。第二个是引入Oracle表示学习,该学习产生的表示形式可以保证足以准确的异常检测。这两种技术可帮助研究人员将学习表示的质量与异常评分机制的性能分开,以便他们可以调试和改善系统。这些方法还为通过更好的异常评分机制改善了多少开放类别检测提供了上限。两个牙齿的组合给出了任何开放类别检测方法可以实现的性能的上限。这项工作介绍了这两种Oracle技术,并通过将它们应用于几种领先的开放类别检测方法来演示其实用性。
translated by 谷歌翻译
驱动深度学习成功的反向传播很可能与大脑的学习机制不同。在本文中,我们制定了一项受生物学启发的学习规则,该规则在HEBB著名的建议的想法之后,发现了当地竞争的特征。已经证明,该本地学习规则所学的无监督功能可以作为培训模型,以提高某些监督学习任务的绩效。更重要的是,该本地学习规则使我们能够构建一个与返回传播完全不同的新学习范式,该范式命名为激活学习,其中神经网络的输出激活大致衡量了输入模式的可能性。激活学习能够从几乎没有输入模式的几镜头中学习丰富的本地特征,并且当训练样本的数量相对较小时,比反向传播算法表现出明显更好的性能。这种学习范式统一了无监督的学习,监督的学习和生成模型,并且更安全地抵抗对抗性攻击,为建立一般任务神经网络的某些可能性铺平了道路。
translated by 谷歌翻译
Alphazero,Leela Chess Zero和Stockfish Nnue革新了计算机国际象棋。本书对此类引擎的技术内部工作进行了完整的介绍。该书分为四个主要章节 - 不包括第1章(简介)和第6章(结论):第2章引入神经网络,涵盖了所有用于构建深层网络的基本构建块,例如Alphazero使用的网络。内容包括感知器,后传播和梯度下降,分类,回归,多层感知器,矢量化技术,卷积网络,挤压网络,挤压和激发网络,完全连接的网络,批处理归一化和横向归一化和跨性线性单位,残留层,剩余层,过度效果和底漆。第3章介绍了用于国际象棋发动机以及Alphazero使用的经典搜索技术。内容包括minimax,alpha-beta搜索和蒙特卡洛树搜索。第4章展示了现代国际象棋发动机的设计。除了开创性的Alphago,Alphago Zero和Alphazero我们涵盖Leela Chess Zero,Fat Fritz,Fat Fritz 2以及有效更新的神经网络(NNUE)以及MAIA。第5章是关于实施微型α。 Shexapawn是国际象棋的简约版本,被用作为此的示例。 Minimax搜索可以解决六ap峰,并产生了监督学习的培训位置。然后,作为比较,实施了类似Alphazero的训练回路,其中通过自我游戏进行训练与强化学习结合在一起。最后,比较了类似α的培训和监督培训。
translated by 谷歌翻译
Deep autoencoders, and other deep neural networks, have demonstrated their e ectiveness in discovering non-linear features across many problem domains. However, in many real-world problems, large outliers and pervasive noise are commonplace, and one may not have access to clean training data as required by standard deep denoising autoencoders. Herein, we demonstrate novel extensions to deep autoencoders which not only maintain a deep autoencoders' ability to discover high quality, non-linear features but can also eliminate outliers and noise without access to any clean training data. Our model is inspired by Robust Principal Component Analysis, and we split the input data X into two parts, X = L D + S, where L D can be e ectively reconstructed by a deep autoencoder and S contains the outliers and noise in the original data X . Since such spli ing increases the robustness of standard deep autoencoders, we name our model a "Robust Deep Autoencoder (RDA)". Further, we present generalizations of our results to grouped sparsity norms which allow one to distinguish random anomalies from other types of structured corruptions, such as a collection of features being corrupted across many instances or a collection of instances having more corruptions than their fellows. Such "Group Robust Deep Autoencoders (GRDA)" give rise to novel anomaly detection approaches whose superior performance we demonstrate on a selection of benchmark problems.
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
由于更高的维度和困难的班级,机器学习应用中的可用数据变得越来越复杂。根据类重叠,可分离或边界形状,以及组形态,存在各种各样的方法来测量标记数据的复杂性。许多技术可以转换数据才能找到更好的功能,但很少专注于具体降低数据复杂性。大多数数据转换方法主要是治疗维度方面,撇开类标签中的可用信息,当类别在某种方式复杂时,可以有用。本文提出了一种基于AutoEncoder的复杂性减少方法,使用类标签来告知损耗函数关于所生成的变量的充分性。这导致了三个不同的新功能学习者,得分手,斯卡尔和切片机。它们基于Fisher的判别比率,Kullback-Leibler发散和最小二乘支持向量机。它们可以作为二进制分类问题应用作为预处理阶段。跨越27个数据集和一系列复杂性和分类指标的彻底实验表明,课堂上通知的AutoEncoders执行优于4个其他流行的无监督功能提取技术,特别是当最终目标使用数据进行分类任务时。
translated by 谷歌翻译
投影技术经常用于可视化高维数据,使用户能够更好地理解在2D屏幕上的多维空间的总体结构。尽管存在着许多这样的方法,相当小的工作已经逆投影的普及方法来完成 - 绘制投影点,或者更一般的过程中,投影空间回到原来的高维空间。在本文中我们提出NNInv,用近似的任何突起或映射的逆的能力的深学习技术。 NNInv学会重建上的二维投影空间从任意点高维数据,给用户在视觉分析系统所学习的高维表示的能力进行交互。我们提供NNInv的参数空间的分析,并在选择这些参数提供指导。我们通过一系列定量和定性分析的延长NNInv的有效性验证。交互式实例中插值,分级协议,梯度可视化:然后,我们把它应用到三个可视化任务,验证了该方法的效用。
translated by 谷歌翻译