许多基于模型的强化学习方法(MBRL)为他们可以提供的马尔可夫决策过程(MDP)模型的准确性和学习效率提供了保证。同时,状态抽象技术允许减少MDP的大小,同时相对于原始问题保持有限的损失。因此,令人惊讶的是,在结合两种技术时,即MBRL仅观察抽象状态时,没有任何保证可用。我们的理论分析表明,抽象可以在网上收集的样本(例如在现实世界中)引入依赖性,这意味着MBRL的大多数结果不能直接扩展到此设置。这项工作的新结果表明,可以使用Martingales的浓度不平等来克服此问题,并允许将R-MAX等算法的结果扩展到以抽象为设置的算法。因此,通过抽象的模型为抽象的RL生成了第一个性能保证:基于模型的强化学习。
translated by 谷歌翻译
最近有兴趣了解地平线依赖于加固学习(RL)的样本复杂性。值得注意的是,对于具有Horizo​​ n长度$ H $的RL环境,之前的工作表明,使用$ \ mathrm {polylog}(h)有可能学习$ o(1)$ - 最佳策略的可能大致正确(pac)算法$当州和行动的数量固定时的环境交互剧集。它尚不清楚$ \ mathrm {polylog}(h)$依赖性是必要的。在这项工作中,我们通过开发一种算法来解决这个问题,该算法在仅使用ONTO(1)美元的环境交互的同时实现相同的PAC保证,完全解决RL中样本复杂性的地平线依赖性。我们通过(i)在贴现和有限地平线马尔可夫决策过程(MDP)和(ii)在MDP中的新型扰动分析中建立价值函数之间的联系。我们相信我们的新技术具有独立兴趣,可在RL中应用相关问题。
translated by 谷歌翻译
RL常用的启发式是经验重放(例如〜\ CiteT {Lin1993ReInforcement,Mnih2015human}),其中一个学习者商店和重新使用过去的轨迹,好像它们在线采样。在这项工作中,我们在表格Q-Learning的设置中启动了对这种启发式的严格研究。我们提供了融合率保证,并讨论如何与Q-Leature的融合相比,这取决于诸如重播迭代的频率和数量的重要参数。我们还通过引入和分析简单的MDP,提供理论上的证据显示我们可能期待这一启发式的启发式态度。最后,我们提供了一些实验来支持我们的理论发现。
translated by 谷歌翻译
部分可观察到的马尔可夫决策过程(POMDPS)是加强学习的自然和一般模型,以考虑到代理人对其当前国家的不确定性。在POMDPS的文献中,习惯性地假设在已知参数时计算最佳策略的规划Oracle,即使已知问题是计算的。几乎所有现有的规划算法都在指数时间内运行,缺乏可证明的性能保证,或者需要在每个可能的政策下对转换动态进行强烈的假设。在这项工作中,我们重新审视了规划问题并问:是否有自然和积极的假设,使计划变得容易?我们的主要结果是用于规划(一步)可观察POMDPS的QuasioInomial-time算法。具体而言,我们假设各国的分离良好的分布导致分开的观察分布,因此观察结果在每一步中至少有一些信息。至关重要的是,这个假设没有对POMDP的过渡动态的限制;尽管如此,它意味着近乎最佳的政策承认准简洁的描述,这通常不是真实的(在标准的硬度假设下)。我们的分析基于滤波器稳定性的新定量界限 - 即潜在状态的最佳滤波器的速率忘记其初始化。此外,在指数时间假设下,我们证明了在可观察POMDPS中规划的匹配硬度。
translated by 谷歌翻译
在这些说明中,我们将解决对我们不完全了解的马尔可夫决策过程(MDP)找到最佳策略的问题。我们的意图是从离线设置慢慢过渡到在线(学习)设置。即,我们正在走向加强学习。
translated by 谷歌翻译
强化学习算法的实用性由于相对于问题大小的规模差而受到限制,因为学习$ \ epsilon $ -optimal策略的样本复杂性为$ \ tilde {\ omega} \ left(| s | s || a || a || a || a | h^3 / \ eps^2 \ right)$在MDP的最坏情况下,带有状态空间$ S $,ACTION SPACE $ A $和HORIZON $ H $。我们考虑一类显示出低级结构的MDP,其中潜在特征未知。我们认为,价值迭代和低级别矩阵估计的自然组合导致估计误差在地平线上呈指数增长。然后,我们提供了一种新算法以及统计保证,即有效利用了对生成模型的访问,实现了$ \ tilde {o} \ left的样本复杂度(d^5(d^5(| s |+| a |)\),我们有效利用低级结构。对于等级$ d $设置的Mathrm {Poly}(h)/\ EPS^2 \ right)$,相对于$ | s |,| a | $和$ \ eps $的缩放,这是最小值的最佳。与线性和低级别MDP的文献相反,我们不需要已知的功能映射,我们的算法在计算上很简单,并且我们的结果长期存在。我们的结果提供了有关MDP对过渡内核与最佳动作值函数所需的最小低级结构假设的见解。
translated by 谷歌翻译
逆增强学习(IRL)是从专家演示中推断奖励功能的强大范式。许多IRL算法都需要已知的过渡模型,有时甚至是已知的专家政策,或者至少需要访问生成模型。但是,对于许多现实世界应用,这些假设太强了,在这些应用程序中,只能通过顺序相互作用访问环境。我们提出了一种新颖的IRL算法:逆增强学习(ACEIRL)的积极探索,该探索积极探索未知的环境和专家政策,以快速学习专家的奖励功能并确定良好的政策。 Aceirl使用以前的观察来构建置信区间,以捕获合理的奖励功能,并找到关注环境最有用区域的勘探政策。 Aceirl是使用样品复杂性界限的第一种活动IRL的方法,不需要环境的生成模型。在最坏情况下,Aceirl与活性IRL的样品复杂性与生成模型匹配。此外,我们建立了一个与问题相关的结合,该结合将Aceirl的样品复杂性与给定IRL问题的次级隔离间隙联系起来。我们在模拟中对Aceirl进行了经验评估,发现它的表现明显优于更幼稚的探索策略。
translated by 谷歌翻译
Epsilon-Greedy,SoftMax或Gaussian噪声等近视探索政策在某些强化学习任务中无法有效探索,但是在许多其他方面,它们的表现都很好。实际上,实际上,由于简单性,它们通常被选为最佳选择。但是,对于哪些任务执行此类政策成功?我们可以为他们的有利表现提供理论保证吗?尽管这些政策具有显着的实际重要性,但这些关键问题几乎没有得到研究。本文介绍了对此类政策的理论分析,并为通过近视探索提供了对增强学习的首次遗憾和样本复杂性。我们的结果适用于具有有限的Bellman Eluder维度的情节MDP中的基于价值功能的算法。我们提出了一种新的复杂度度量,称为近视探索差距,用Alpha表示,该差距捕获了MDP的结构属性,勘探策略和给定的值函数类别。我们表明,近视探索的样品复杂性与该数量的倒数1 / alpha^2二次地量表。我们通过具体的例子进一步证明,由于相应的动态和奖励结构,在近视探索成功的几项任务中,近视探索差距确实是有利的。
translated by 谷歌翻译
Value-function approximation methods that operate in batch mode have foundational importance to reinforcement learning (RL). Finite sample guarantees for these methods often crucially rely on two types of assumptions: (1) mild distribution shift, and (2) representation conditions that are stronger than realizability. However, the necessity ("why do we need them?") and the naturalness ("when do they hold?") of such assumptions have largely eluded the literature. In this paper, we revisit these assumptions and provide theoretical results towards answering the above questions, and make steps towards a deeper understanding of value-function approximation.
translated by 谷歌翻译
This paper studies systematic exploration for reinforcement learning with rich observations and function approximation. We introduce a new model called contextual decision processes, that unifies and generalizes most prior settings. Our first contribution is a complexity measure, the Bellman rank , that we show enables tractable learning of near-optimal behavior in these processes and is naturally small for many well-studied reinforcement learning settings. Our second contribution is a new reinforcement learning algorithm that engages in systematic exploration to learn contextual decision processes with low Bellman rank. Our algorithm provably learns near-optimal behavior with a number of samples that is polynomial in all relevant parameters but independent of the number of unique observations. The approach uses Bellman error minimization with optimistic exploration and provides new insights into efficient exploration for reinforcement learning with function approximation.
translated by 谷歌翻译
大部分强化学习理论都建立在计算上难以实施的甲板上。专门用于在部分可观察到的马尔可夫决策过程(POMDP)中学习近乎最佳的政策,现有算法要么需要对模型动态(例如确定性过渡)做出强有力的假设,要么假设访问甲骨文作为解决艰难的计划或估算问题的访问子例程。在这项工作中,我们在合理的假设下开发了第一个用于POMDP的无Oracle学习算法。具体而言,我们给出了一种用于在“可观察” pomdps中学习的准化性时间端到端算法,其中可观察性是一个假设,即对国家而言,分离良好的分布诱导了分离良好的分布分布而不是观察。我们的技术规定了在不确定性下使用乐观原则来促进探索的更传统的方法,而是在构建策略涵盖的情况下提供了一种新颖的barycentric跨度应用。
translated by 谷歌翻译
We consider the problem of provably optimal exploration in reinforcement learning for finite horizon MDPs. We show that an optimistic modification to value iteration achieves a regret bound of O(where H is the time horizon, S the number of states, A the number of actions and T the number of time-steps. This result improves over the best previous known bound O(HS √ AT ) achieved by the UCRL2 algorithm of Jaksch et al. ( 2010). The key significance of our new results is that when T ≥ H 3 S 3 A and SA ≥ H, it leads to a regret of O( √ HSAT ) that matches the established lower bound of Ω( √ HSAT ) up to a logarithmic factor. Our analysis contains two key insights. We use careful application of concentration inequalities to the optimal value function as a whole, rather than to the transitions probabilities (to improve scaling in S), and we define Bernstein-based "exploration bonuses" that use the empirical variance of the estimated values at the next states (to improve scaling in H).
translated by 谷歌翻译
我们提出了对基于模型的RL问题的交织勘探和开发时期的探索和剥削(DSEE)算法的确定性测序,旨在同时学习系统模型,即马尔可夫决策过程(MDP)以及相关的最佳政策。在探索过程中,DSEE探索环境并更新预期奖励和过渡概率的估计值。在开发过程中,使用系统动力学的最新估计值用于获得具有很高概率的强大策略。我们设计了探索和剥削时期的长度,以使累积遗憾成为时间的亚线性功能。我们还讨论了一种使用多跳跃MDP和大都市杂货算法的有效探索方法,以均匀地对每个州行动对采样,概率很高。
translated by 谷歌翻译
This work considers the sample complexity of obtaining an $\varepsilon$-optimal policy in an average reward Markov Decision Process (AMDP), given access to a generative model (simulator). When the ground-truth MDP is weakly communicating, we prove an upper bound of $\widetilde O(H \varepsilon^{-3} \ln \frac{1}{\delta})$ samples per state-action pair, where $H := sp(h^*)$ is the span of bias of any optimal policy, $\varepsilon$ is the accuracy and $\delta$ is the failure probability. This bound improves the best-known mixing-time-based approaches in [Jin & Sidford 2021], which assume the mixing-time of every deterministic policy is bounded. The core of our analysis is a proper reduction bound from AMDP problems to discounted MDP (DMDP) problems, which may be of independent interests since it allows the application of DMDP algorithms for AMDP in other settings. We complement our upper bound by proving a minimax lower bound of $\Omega(|\mathcal S| |\mathcal A| H \varepsilon^{-2} \ln \frac{1}{\delta})$ total samples, showing that a linear dependent on $H$ is necessary and that our upper bound matches the lower bound in all parameters of $(|\mathcal S|, |\mathcal A|, H, \ln \frac{1}{\delta})$ up to some logarithmic factors.
translated by 谷歌翻译
在现实世界的强化学习应用中,学习者的观察空间无处不在,有关手头任务的相关信息和无关紧要。从高维观察中学习一直是监督学习和统计数据(例如,通过稀疏性)进行广泛研究的主题,但是即使在有限的状态/行动(表格)领域,也不能很好地理解强化学习中的类似问题。我们引入了一个新的问题设置,用于增强学习,即马尔可夫决策过程(EXOMDP),其中状态空间将(未知)分解成一个小的(或内源性)组件,并且很大的无关(或外源)组件;外源成分独立于学习者的行为,但以任意的,时间相关的方式演变。我们提供了一种新的算法Exorl,该算法学习了一种近乎最佳的政策,其样品复杂性在内源性组件的大小中多项式,几乎独立于外源成分的大小,从而提供了一个双重指数的改进算法。我们的结果首次突出了在存在外源信息的情况下首次可以进行样品高效的增强学习,并为未来的调查提供了简单,用户友好的基准。
translated by 谷歌翻译
We study learning contextual MDPs using a function approximation for both the rewards and the dynamics. We consider both the case that the dynamics dependent or independent of the context. For both models we derive polynomial sample and time complexity (assuming an efficient ERM oracle). Our methodology gives a general reduction from learning contextual MDP to supervised learning.
translated by 谷歌翻译
当他们更喜欢$ \ texit {exploit} $时,您如何激励自我兴趣的代理到$ \ texit {探索} $?我们考虑复杂的探索问题,其中每个代理面临相同(但未知)MDP。与传统的加固学习配方相比,代理商控制了政策的选择,而算法只能发出建议。然而,该算法控制信息流,并且可以通过信息不对称激励代理探索。我们设计一种算法,探讨MDP中的所有可达状态。我们达到了类似于先前研究的静态,无国籍探索问题中激励探索的保证担保。据我们所知,这是第一个考虑在有状态,强化学习环境中设计的工作。
translated by 谷歌翻译
我们提出了一个新的学习框架,该框架捕获了许多真实世界用户交互应用程序的分层结构,在该框架中,可以根据探索风险的不同公差将用户分为两组,并应分别处理。在这种情况下,我们同时维护两个政策$ \ pi^{\ text {o}} $和$ \ pi^{\ text {e}} $:$ \ pi^{\ pi^{\ text {o}}} $(“ o “对于“在线”)与第一层的更具风险的用户进行互动,并像往常一样平衡探索和剥削来最大程度地减少后悔,而$ \ pi^{\ text {e}} $(“ e” for“ exploit”)专注于利用到目前为止收集的数据,从第二层的规避风险用户进行剥削。一个重要的问题是,这种分离是否比标准在线设置(即$ \ pi^{\ text {e}} = \ pi^{\ text {o}} $)是否产生优势。我们单独考虑与差距无关的与差距依赖性设置。对于前者来说,我们证明从最小值的角度来看,分离确实不是有益的。对于后者,我们表明,如果选择悲观的价值迭代作为剥削算法来产生$ \ pi^{\ text {e}} $,我们可以不断地对无独立的风险用户$ k的数量来实现遗憾$,与$ \ omega(\ log k)$相同的$ \ omega(\ log k)$在同一环境中遗憾在线遗憾的最优性,不需要为成功的成功而妥协。
translated by 谷歌翻译
强化学习理论集中在两个基本问题上:实现低遗憾,并确定$ \ epsilon $ - 最佳政策。虽然简单的减少允许人们应用低温算法来获得$ \ epsilon $ - 最佳政策并达到最坏的最佳速率,但尚不清楚低regret算法是否可以获得实例 - 最佳率的策略识别率。我们表明这是不可能的 - 在遗憾和确定$ \ epsilon $ - 最佳政策之间以最佳的利率确定了基本的权衡。由于我们的负面发现,我们提出了针对PAC表格增强学习实例依赖性样本复杂性的新量度,该方法明确说明了基础MDP中可达到的国家访问分布。然后,我们提出和分析一种基于计划的新型算法,该算法达到了这种样本的复杂性 - 产生的复杂性会随着次要差距和状态的“可达到性”而缩放。我们显示我们的算法几乎是最小的最佳选择,并且在一些示例中,我们实例依赖性样品复杂性比最差案例界限可显着改善。
translated by 谷歌翻译
本文为表格马尔可夫决策过程(MDP)提供了第一种多项式时间算法,该算法享受了遗憾的界限\ emph {独立于计划范围}。具体来说,我们考虑具有$ S $州的表格MDP,$ A $ ACTICY,计划范围$ h $,总奖励为$ 1 $,代理商播放$ K $ evipodes。我们设计了一种实现$ o \ left(\ mathrm {poly}(s,a,a,\ log k)\ sqrt {k} \ right)$遗憾的算法(\ mathrm {poly}(s,a,a,\ log k)polylog}(h)$依赖项〜\ citep {zhang2020 reininforcement}或对$ s $〜\ citep {li2021settling}具有指数依赖关系。我们的结果依赖于一系列新的结构引理,从而建立了固定策略的近似能力,稳定性和浓度特性,这些策略可以在与马尔可夫链有关的其他问题中应用。
translated by 谷歌翻译