RL常用的启发式是经验重放(例如〜\ CiteT {Lin1993ReInforcement,Mnih2015human}),其中一个学习者商店和重新使用过去的轨迹,好像它们在线采样。在这项工作中,我们在表格Q-Learning的设置中启动了对这种启发式的严格研究。我们提供了融合率保证,并讨论如何与Q-Leature的融合相比,这取决于诸如重播迭代的频率和数量的重要参数。我们还通过引入和分析简单的MDP,提供理论上的证据显示我们可能期待这一启发式的启发式态度。最后,我们提供了一些实验来支持我们的理论发现。
translated by 谷歌翻译
体验重播\ CITEP {Lin1993ReInforcement,Mnih2015human}是一种广泛使用的技术,可以实现有效利用数据和R1算法中的性能提高。在经验重放中,过去的转换存储在内存缓冲区中并在学习期间重新使用。在以前的作品中提出了从重播缓冲区中提出了用于从重放缓冲区的采样方案的各种建议,试图最佳选择这些经验,这些经历将有最大贡献的融合到最佳政策。在这里,我们对重播采样方案提供一些条件,该方案将确保收敛,重点是表格设置中的众所周知的Q学习算法。在为收敛建立充足的条件后,我们向建议以偏见方式重播的经验略有不同的用法作为改变所产生的策略的属性的方法。我们启动了对体验重放的严格研究作为控制和修改生成策略的属性的工具。特别是,我们表明使用适当的偏置采样方案可以允许我们实现\ emph {Safe}策略。我们认为,使用体验重放作为偏置机制,允许以可取的方式控制所产生的政策是许多应用程序具有有希望的潜力的想法。
translated by 谷歌翻译
许多基于模型的强化学习方法(MBRL)为他们可以提供的马尔可夫决策过程(MDP)模型的准确性和学习效率提供了保证。同时,状态抽象技术允许减少MDP的大小,同时相对于原始问题保持有限的损失。因此,令人惊讶的是,在结合两种技术时,即MBRL仅观察抽象状态时,没有任何保证可用。我们的理论分析表明,抽象可以在网上收集的样本(例如在现实世界中)引入依赖性,这意味着MBRL的大多数结果不能直接扩展到此设置。这项工作的新结果表明,可以使用Martingales的浓度不平等来克服此问题,并允许将R-MAX等算法的结果扩展到以抽象为设置的算法。因此,通过抽象的模型为抽象的RL生成了第一个性能保证:基于模型的强化学习。
translated by 谷歌翻译
我们研究了用线性函数近似的加固学习中的违规评估(OPE)问题,旨在根据行为策略收集的脱机数据来估计目标策略的价值函数。我们建议纳入价值函数的方差信息以提高ope的样本效率。更具体地说,对于时间不均匀的epiSodic线性马尔可夫决策过程(MDP),我们提出了一种算法VA-OPE,它使用价值函数的估计方差重新重量拟合Q迭代中的Bellman残差。我们表明我们的算法达到了比最着名的结果绑定的更紧密的误差。我们还提供了行为政策与目标政策之间的分布转移的细粒度。广泛的数值实验证实了我们的理论。
translated by 谷歌翻译
在这些说明中,我们将解决对我们不完全了解的马尔可夫决策过程(MDP)找到最佳策略的问题。我们的意图是从离线设置慢慢过渡到在线(学习)设置。即,我们正在走向加强学习。
translated by 谷歌翻译
我们研究了在随机最短路径(SSP)设置中的学习问题,其中代理试图最小化在达到目标状态之前累积的预期成本。我们设计了一种新型基于模型的算法EB-SSP,仔细地偏离了经验转变,并通过探索奖励来赋予经验成本,以诱导乐观的SSP问题,其相关价值迭代方案被保证收敛。我们证明了EB-SSP实现了Minimax后悔率$ \ tilde {o}(b _ {\ star} \ sqrt {sak})$,其中$ k $是剧集的数量,$ s $是状态的数量, $ a $是行动的数量,而B _ {\ star} $绑定了从任何状态的最佳策略的预期累积成本,从而缩小了下限的差距。有趣的是,EB-SSP在没有参数的同时获得此结果,即,它不需要任何先前的$ B _ {\ star} $的知识,也不需要$ t _ {\ star} $,它绑定了预期的时间 ​​- 任何州的最佳政策的目标。此外,我们说明了各种情况(例如,当$ t _ {\ star} $的订单准确估计可用时,遗憾地仅包含对$ t _ {\ star} $的对数依赖性,因此产生超出有限范围MDP设置的第一个(几乎)的免地相会遗憾。
translated by 谷歌翻译
逆增强学习(IRL)是从专家演示中推断奖励功能的强大范式。许多IRL算法都需要已知的过渡模型,有时甚至是已知的专家政策,或者至少需要访问生成模型。但是,对于许多现实世界应用,这些假设太强了,在这些应用程序中,只能通过顺序相互作用访问环境。我们提出了一种新颖的IRL算法:逆增强学习(ACEIRL)的积极探索,该探索积极探索未知的环境和专家政策,以快速学习专家的奖励功能并确定良好的政策。 Aceirl使用以前的观察来构建置信区间,以捕获合理的奖励功能,并找到关注环境最有用区域的勘探政策。 Aceirl是使用样品复杂性界限的第一种活动IRL的方法,不需要环境的生成模型。在最坏情况下,Aceirl与活性IRL的样品复杂性与生成模型匹配。此外,我们建立了一个与问题相关的结合,该结合将Aceirl的样品复杂性与给定IRL问题的次级隔离间隙联系起来。我们在模拟中对Aceirl进行了经验评估,发现它的表现明显优于更幼稚的探索策略。
translated by 谷歌翻译
我们研究了具有线性函数近似增强学习中的随机最短路径(SSP)问题,其中过渡内核表示为未知模型的线性混合物。我们将此类别的SSP问题称为线性混合物SSP。我们提出了一种具有Hoeffding-type置信度的新型算法,用于学习线性混合物SSP,可以获得$ \ tilde {\ Mathcal {o}}}}(d B _ {\ star}^{1.5} \ sqrt {k/c_ {k/c_ {k/c_ {k/c_ { \ min}})$遗憾。这里$ k $是情节的数量,$ d $是混合模型中功能映射的维度,$ b _ {\ star} $限制了最佳策略的预期累积成本,$ c _ {\ min}>> 0 $是成本函数的下限。当$ c _ {\ min} = 0 $和$ \ tilde {\ mathcal {o}}}(k^{2/3})$遗憾时,我们的算法也适用于情况。据我们所知,这是第一个具有sublrinear遗憾保证线性混合物SSP的算法。此外,我们设计了精致的伯恩斯坦型信心集并提出了改进的算法,该算法可实现$ \ tilde {\ Mathcal {o}}}(d b _ {\ star} \ sqrt {k/c/c/c {k/c _ {\ min}}) $遗憾。为了补充遗憾的上限,我们还证明了$ \ omega(db _ {\ star} \ sqrt {k})$的下限。因此,我们的改进算法将下限匹配到$ 1/\ sqrt {c _ {\ min}} $ factor和poly-logarithmic因素,从而实现了近乎最佳的遗憾保证。
translated by 谷歌翻译
最近有兴趣了解地平线依赖于加固学习(RL)的样本复杂性。值得注意的是,对于具有Horizo​​ n长度$ H $的RL环境,之前的工作表明,使用$ \ mathrm {polylog}(h)有可能学习$ o(1)$ - 最佳策略的可能大致正确(pac)算法$当州和行动的数量固定时的环境交互剧集。它尚不清楚$ \ mathrm {polylog}(h)$依赖性是必要的。在这项工作中,我们通过开发一种算法来解决这个问题,该算法在仅使用ONTO(1)美元的环境交互的同时实现相同的PAC保证,完全解决RL中样本复杂性的地平线依赖性。我们通过(i)在贴现和有限地平线马尔可夫决策过程(MDP)和(ii)在MDP中的新型扰动分析中建立价值函数之间的联系。我们相信我们的新技术具有独立兴趣,可在RL中应用相关问题。
translated by 谷歌翻译
我们介绍了一种普遍的策略,可实现有效的多目标勘探。它依赖于adagoal,一种基于简单约束优化问题的新的目标选择方案,其自适应地针对目标状态,这既不是太困难也不是根据代理目前的知识达到的。我们展示了Adagoal如何用于解决学习$ \ epsilon $ -optimal的目标条件的政策,以便在$ L $ S_0 $ S_0 $奖励中获得的每一个目标状态,以便在$ S_0 $中获取。免费马尔可夫决策过程。在标准的表格外壳中,我们的算法需要$ \ tilde {o}(l ^ 3 s a \ epsilon ^ { - 2})$探索步骤,这几乎很少最佳。我们还容易在线性混合Markov决策过程中实例化Adagoal,其产生具有线性函数近似的第一目标导向的PAC保证。除了强大的理论保证之外,迈克纳队以现有方法的高级别算法结构为锚定,为目标条件的深度加固学习。
translated by 谷歌翻译
在本文中,我们在表格设置中建立了违法演员批评算法的全球最优性和收敛速度,而不使用密度比来校正行为政策的状态分布与目标政策之间的差异。我们的工作超出了现有的工作原理,最佳的策略梯度方法中的现有工作中使用确切的策略渐变来更新策略参数时,我们使用近似和随机更新步骤。我们的更新步骤不是渐变更新,因为我们不使用密度比以纠正状态分布,这与从业者做得好。我们的更新是近似的,因为我们使用学习的评论家而不是真正的价值函数。我们的更新是随机的,因为在每个步骤中,更新仅为当前状态操作对完成。此外,我们在分析中删除了现有作品的几个限制性假设。我们的工作中的核心是基于其均匀收缩性能的时源性Markov链中的通用随机近似算法的有限样本分析。
translated by 谷歌翻译
We incorporate statistical confidence intervals in both the multi-armed bandit and the reinforcement learning problems. In the bandit problem we show that given n arms, it suffices to pull the arms a total of O (n/ε 2 ) log(1/δ) times to find an ε-optimal arm with probability of at least 1 − δ. This bound matches the lower bound of Mannor and Tsitsiklis (2004) up to constants. We also devise action elimination procedures in reinforcement learning algorithms. We describe a framework that is based on learning the confidence interval around the value function or the Q-function and eliminating actions that are not optimal (with high probability). We provide a model-based and a model-free variants of the elimination method. We further derive stopping conditions guaranteeing that the learned policy is approximately optimal with high probability. Simulations demonstrate a considerable speedup and added robustness over ε-greedy Q-learning. * . Preliminary and partial results from this work appeared as extended abstracts in COLT 2002 and ICML 2003.
translated by 谷歌翻译
我们研究了随机的最短路径(SSP)问题,其中代理商必须以最短的预计成本达到目标状态。在问题的学习制定中,代理商没有关于模型的成本和动态的知识。她反复与k $剧集的型号交互,并且必须尽量减少她的遗憾。在这项工作中,我们表明这个设置的Minimax遗憾是$ \ widetilde o(\ sqrt {(b_ \ star ^ 2 + b_ \ star)| s | a | a | k})$ why $ b_ \ star $ a符合来自任何州的最佳政策的预期成本,$ S $是状态空间,$ a $是行动空间。此相匹配的$ \欧米茄(\ SQRT {B_ \星^ 2 | S | |甲| K})$下界Rosenberg等人的。 [2020]对于$ b_ \ star \ ge 1 $,并改善了他们的遗憾,以\ sqrt {| s |} $ \ you的遗憾。对于$ b_ \ star <1 $我们证明$ \ omega的匹配下限(\ sqrt {b_ \ star | s | a | a | k})$。我们的算法基于SSP的新颖减少到有限地平线MDP。为此,我们为有限地域设置提供了一种算法,其前期遗憾遗憾地取决于最佳政策的预期成本,并且仅对地平线上的对数。
translated by 谷歌翻译
In this paper we develop a theoretical analysis of the performance of sampling-based fitted value iteration (FVI) to solve infinite state-space, discounted-reward Markovian decision processes (MDPs) under the assumption that a generative model of the environment is available. Our main results come in the form of finite-time bounds on the performance of two versions of sampling-based FVI. The convergence rate results obtained allow us to show that both versions of FVI are well behaving in the sense that by using a sufficiently large number of samples for a large class of MDPs, arbitrary good performance can be achieved with high probability. An important feature of our proof technique is that it permits the study of weighted L p -norm performance bounds. As a result, our technique applies to a large class of function-approximation methods (e.g., neural networks, adaptive regression trees, kernel machines, locally weighted learning), and our bounds scale well with the effective horizon of the MDP. The bounds show a dependence on the stochastic stability properties of the MDP: they scale with the discounted-average concentrability of the future-state distributions. They also depend on a new measure of the approximation power of the function space, the inherent Bellman residual, which reflects how well the function space is "aligned" with the dynamics and rewards of the MDP. The conditions of the main result, as well as the concepts introduced in the analysis, are extensively discussed and compared to previous theoretical results. Numerical experiments are used to substantiate the theoretical findings.
translated by 谷歌翻译
部分可观察到的马尔可夫决策过程(POMDPS)是加强学习的自然和一般模型,以考虑到代理人对其当前国家的不确定性。在POMDPS的文献中,习惯性地假设在已知参数时计算最佳策略的规划Oracle,即使已知问题是计算的。几乎所有现有的规划算法都在指数时间内运行,缺乏可证明的性能保证,或者需要在每个可能的政策下对转换动态进行强烈的假设。在这项工作中,我们重新审视了规划问题并问:是否有自然和积极的假设,使计划变得容易?我们的主要结果是用于规划(一步)可观察POMDPS的QuasioInomial-time算法。具体而言,我们假设各国的分离良好的分布导致分开的观察分布,因此观察结果在每一步中至少有一些信息。至关重要的是,这个假设没有对POMDP的过渡动态的限制;尽管如此,它意味着近乎最佳的政策承认准简洁的描述,这通常不是真实的(在标准的硬度假设下)。我们的分析基于滤波器稳定性的新定量界限 - 即潜在状态的最佳滤波器的速率忘记其初始化。此外,在指数时间假设下,我们证明了在可观察POMDPS中规划的匹配硬度。
translated by 谷歌翻译
我们介绍了一种改进政策改进的方法,该方法在基于价值的强化学习(RL)的贪婪方法与基于模型的RL的典型计划方法之间进行了插值。新方法建立在几何视野模型(GHM,也称为伽马模型)的概念上,该模型对给定策略的折现状态验证分布进行了建模。我们表明,我们可以通过仔细的基本策略GHM的仔细组成,而无需任何其他学习,可以评估任何非马尔科夫策略,以固定的概率在一组基本马尔可夫策略之间切换。然后,我们可以将广义政策改进(GPI)应用于此类非马尔科夫政策的收集,以获得新的马尔可夫政策,通常将其表现优于其先驱。我们对这种方法提供了彻底的理论分析,开发了转移和标准RL的应用,并在经验上证明了其对标准GPI的有效性,对充满挑战的深度RL连续控制任务。我们还提供了GHM培训方法的分析,证明了关于先前提出的方法的新型收敛结果,并显示了如何在深度RL设置中稳定训练这些模型。
translated by 谷歌翻译
Q-Learning,旨在以无模式的方式学习Markov决策过程(MDP)的最佳Q函数,位于加强学习的核心。当涉及到同步设置时(从每次迭代中从生成模型中从生成模型中汲取独立样本)时,已经对理解Q学习的样本效率进行了实质性进展。考虑一个$ \ gamma $ -discounted infinite-horizo​​ n mdp与状态空间$ \ mathcal {s} $和动作空间$ \ mathcal {a} $:要产生一个entrywise $ \ varepsilon $ - 最佳q函数的克制,最先进的Q-Learning理论需要超出$ \ FRAC {| \ Mathcal {s} || \ mathcal {a} || \ {(1- \ gamma)^ 5 \ varepsilon的示例大小^ {2}} $,它无法匹配现有的最低限度下限。这引起了自然问题:Q-Learning的急剧性复杂性是什么?是Q-Learning可怕的次优吗?本文为同步设置解决了这些问题:(1)当$ | \ mathcal {a} | = 1 $(使q学习减少到TD学习)时,我们证明了TD学习的样本复杂性是最佳的最佳和尺度为$ \ frac {| \ mathcal {s} |} {(1- \ gamma)^ 3 \ varepsilon ^ 2} $(最多到日志系数); (2)当$ | \ mathcal {a} | \ geq 2 $时,我们解决了q-learning的样本复杂性,按$ \ frac {| \ mathcal {s} || \ mathcal {a} || } {(1- \ gamma)^ 4 \ varepsilon ^ 2} $(最多到日志系数)。我们的理论推出了Q-Leature的严格次优,当$ | \ mathcal {a} | \ geq 2 $,并严格严格估计在q-learning中的负面影响。最后,我们扩展了我们的分析以适应异步Q-Learning(即,与马尔可夫样本的情况),锐化其样本复杂性的地平线依赖性为$ \ frac {1} {(1- \ gamma)^ 4} $。
translated by 谷歌翻译
我们研究了随机游戏(SGS)的梯度播放算法的性能,其中每个代理商试图通过基于代理之间共享的当前状态信息来独立做出决策来最大限度地提高自己的总折扣奖励。通过在给定状态下选择某个动作的概率来直接参数化策略。我们展示了纳什均衡(NES)和一阶固定政策在此设置中等同,并在严格的NES周围给出局部收敛速度。此外,对于称为马尔可夫潜在游戏的SGS的子类(包括具有重要特殊情况的代理中具有相同奖励的协作设置),我们设计了一种基于样本的增强学习算法,并为两者提供非渐近全局收敛速度分析精确的梯度游戏和我们基于样本的学习算法。我们的结果表明,迭代的数量达到$ \ epsilon $ -Ne线性缩放,而不是指数级,而代理人数。还考虑了局部几何和局部稳定性,在那里我们证明严格的NE是总潜在功能的局部最大值,完全混合的NE是鞍点。
translated by 谷歌翻译
我们研究马尔可夫决策过程(MDP)框架中的离线数据驱动的顺序决策问题。为了提高学习政策的概括性和适应性,我们建议通过一套关于在政策诱导的固定分配所在的分发的一套平均奖励来评估每项政策。给定由某些行为策略生成的多个轨迹的预收集数据集,我们的目标是在预先指定的策略类中学习一个强大的策略,可以最大化此集的最小值。利用半参数统计的理论,我们开发了一种统计上有效的策略学习方法,用于估算DE NED强大的最佳政策。在数据集中的总决策点方面建立了达到对数因子的速率最佳遗憾。
translated by 谷歌翻译
Epsilon-Greedy,SoftMax或Gaussian噪声等近视探索政策在某些强化学习任务中无法有效探索,但是在许多其他方面,它们的表现都很好。实际上,实际上,由于简单性,它们通常被选为最佳选择。但是,对于哪些任务执行此类政策成功?我们可以为他们的有利表现提供理论保证吗?尽管这些政策具有显着的实际重要性,但这些关键问题几乎没有得到研究。本文介绍了对此类政策的理论分析,并为通过近视探索提供了对增强学习的首次遗憾和样本复杂性。我们的结果适用于具有有限的Bellman Eluder维度的情节MDP中的基于价值功能的算法。我们提出了一种新的复杂度度量,称为近视探索差距,用Alpha表示,该差距捕获了MDP的结构属性,勘探策略和给定的值函数类别。我们表明,近视探索的样品复杂性与该数量的倒数1 / alpha^2二次地量表。我们通过具体的例子进一步证明,由于相应的动态和奖励结构,在近视探索成功的几项任务中,近视探索差距确实是有利的。
translated by 谷歌翻译