We study learning contextual MDPs using a function approximation for both the rewards and the dynamics. We consider both the case that the dynamics dependent or independent of the context. For both models we derive polynomial sample and time complexity (assuming an efficient ERM oracle). Our methodology gives a general reduction from learning contextual MDP to supervised learning.
translated by 谷歌翻译
我们使用访问离线最小二乘回归甲骨文的访问权限,在最低可及性假设下为随机上下文MDP提供了遗憾的最小化算法。我们分析了三个不同的设置:在该动力学的位置,动力学是未知的,但独立于上下文和最具挑战性的设置,而动力学是未知和上下文依赖性的。对于后者,我们的算法获得$ \ tilde {o} \ left(\ max \ {h,{1}/{p_ {min}}} \} \} t \ log(\ max \ {| \ mathcal {f} |,| \ mathcal {p} | \}/\ delta)} \ right)$ hearse bunder bund bund bund bund bund bund bund bunging bund bunger,probinality $ 1- \ delta $,其中$ \ mathcal { P} $和$ \ Mathcal {f} $是用于分别近似动态和奖励的有限且可实现的函数类,$ p_ {min} $是最小可及性参数,$ s $是一组状态,$ a $ a $一组动作,$ h $ the Horizo​​n和$ t $情节数。据我们所知,我们的方法是使用一般函数近似的上下文MDP的第一种乐观方法(即,在没有其他有关功能类别的知识的情况下,例如线性等)。此外,我们还提供$ \ omega的下限即使在已知的动态情况下,也会产生预期的遗憾。
translated by 谷歌翻译
We present the UC$^3$RL algorithm for regret minimization in Stochastic Contextual MDPs (CMDPs). The algorithm operates under the minimal assumptions of realizable function class, and access to offline least squares and log loss regression oracles. Our algorithm is efficient (assuming efficient offline regression oracles) and enjoys an $\widetilde{O}(H^3 \sqrt{T |S| |A|(\log (|\mathcal{F}|/\delta) + \log (|\mathcal{P}|/ \delta) )})$ regret guarantee, with $T$ being the number of episodes, $S$ the state space, $A$ the action space, $H$ the horizon, and $\mathcal{P}$ and $\mathcal{F}$ are finite function classes, used to approximate the context-dependent dynamics and rewards, respectively. To the best of our knowledge, our algorithm is the first efficient and rate-optimal regret minimization algorithm for CMDPs, which operates under the general offline function approximation setting.
translated by 谷歌翻译
Epsilon-Greedy,SoftMax或Gaussian噪声等近视探索政策在某些强化学习任务中无法有效探索,但是在许多其他方面,它们的表现都很好。实际上,实际上,由于简单性,它们通常被选为最佳选择。但是,对于哪些任务执行此类政策成功?我们可以为他们的有利表现提供理论保证吗?尽管这些政策具有显着的实际重要性,但这些关键问题几乎没有得到研究。本文介绍了对此类政策的理论分析,并为通过近视探索提供了对增强学习的首次遗憾和样本复杂性。我们的结果适用于具有有限的Bellman Eluder维度的情节MDP中的基于价值功能的算法。我们提出了一种新的复杂度度量,称为近视探索差距,用Alpha表示,该差距捕获了MDP的结构属性,勘探策略和给定的值函数类别。我们表明,近视探索的样品复杂性与该数量的倒数1 / alpha^2二次地量表。我们通过具体的例子进一步证明,由于相应的动态和奖励结构,在近视探索成功的几项任务中,近视探索差距确实是有利的。
translated by 谷歌翻译
大部分强化学习理论都建立在计算上难以实施的甲板上。专门用于在部分可观察到的马尔可夫决策过程(POMDP)中学习近乎最佳的政策,现有算法要么需要对模型动态(例如确定性过渡)做出强有力的假设,要么假设访问甲骨文作为解决艰难的计划或估算问题的访问子例程。在这项工作中,我们在合理的假设下开发了第一个用于POMDP的无Oracle学习算法。具体而言,我们给出了一种用于在“可观察” pomdps中学习的准化性时间端到端算法,其中可观察性是一个假设,即对国家而言,分离良好的分布诱导了分离良好的分布分布而不是观察。我们的技术规定了在不确定性下使用乐观原则来促进探索的更传统的方法,而是在构建策略涵盖的情况下提供了一种新颖的barycentric跨度应用。
translated by 谷歌翻译
强化学习算法的实用性由于相对于问题大小的规模差而受到限制,因为学习$ \ epsilon $ -optimal策略的样本复杂性为$ \ tilde {\ omega} \ left(| s | s || a || a || a || a | h^3 / \ eps^2 \ right)$在MDP的最坏情况下,带有状态空间$ S $,ACTION SPACE $ A $和HORIZON $ H $。我们考虑一类显示出低级结构的MDP,其中潜在特征未知。我们认为,价值迭代和低级别矩阵估计的自然组合导致估计误差在地平线上呈指数增长。然后,我们提供了一种新算法以及统计保证,即有效利用了对生成模型的访问,实现了$ \ tilde {o} \ left的样本复杂度(d^5(d^5(| s |+| a |)\),我们有效利用低级结构。对于等级$ d $设置的Mathrm {Poly}(h)/\ EPS^2 \ right)$,相对于$ | s |,| a | $和$ \ eps $的缩放,这是最小值的最佳。与线性和低级别MDP的文献相反,我们不需要已知的功能映射,我们的算法在计算上很简单,并且我们的结果长期存在。我们的结果提供了有关MDP对过渡内核与最佳动作值函数所需的最小低级结构假设的见解。
translated by 谷歌翻译
最近有兴趣了解地平线依赖于加固学习(RL)的样本复杂性。值得注意的是,对于具有Horizo​​ n长度$ H $的RL环境,之前的工作表明,使用$ \ mathrm {polylog}(h)有可能学习$ o(1)$ - 最佳策略的可能大致正确(pac)算法$当州和行动的数量固定时的环境交互剧集。它尚不清楚$ \ mathrm {polylog}(h)$依赖性是必要的。在这项工作中,我们通过开发一种算法来解决这个问题,该算法在仅使用ONTO(1)美元的环境交互的同时实现相同的PAC保证,完全解决RL中样本复杂性的地平线依赖性。我们通过(i)在贴现和有限地平线马尔可夫决策过程(MDP)和(ii)在MDP中的新型扰动分析中建立价值函数之间的联系。我们相信我们的新技术具有独立兴趣,可在RL中应用相关问题。
translated by 谷歌翻译
This paper studies systematic exploration for reinforcement learning with rich observations and function approximation. We introduce a new model called contextual decision processes, that unifies and generalizes most prior settings. Our first contribution is a complexity measure, the Bellman rank , that we show enables tractable learning of near-optimal behavior in these processes and is naturally small for many well-studied reinforcement learning settings. Our second contribution is a new reinforcement learning algorithm that engages in systematic exploration to learn contextual decision processes with low Bellman rank. Our algorithm provably learns near-optimal behavior with a number of samples that is polynomial in all relevant parameters but independent of the number of unique observations. The approach uses Bellman error minimization with optimistic exploration and provides new insights into efficient exploration for reinforcement learning with function approximation.
translated by 谷歌翻译
尽管在理解增强学习的最小样本复杂性(RL)(在“最坏情况”的实例上学习的复杂性)方面已经取得了很多进展,但这种复杂性的衡量标准通常不会捕捉到真正的学习困难。在实践中,在“简单”的情况下,我们可能希望获得比最糟糕的实例可以实现的要好得多。在这项工作中,我们试图理解在具有线性函数近似的RL设置中学习近乎最佳策略(PAC RL)的“实例依赖性”复杂性。我们提出了一种算法,\ textsc {pedel},该算法实现了依赖于实例的复杂性的量度,这是RL中的第一个具有功能近似设置,从而捕获了每个特定问题实例的学习难度。通过一个明确的示例,我们表明\ textsc {pedel}可以在低重晶,最小值 - 最佳算法上获得可证明的收益,并且这种算法无法达到实例 - 最佳速率。我们的方法取决于基于设计的新型实验程序,该程序将勘探预算重点放在与学习近乎最佳政策最相关的“方向”上,并且可能具有独立的兴趣。
translated by 谷歌翻译
强化学习理论集中在两个基本问题上:实现低遗憾,并确定$ \ epsilon $ - 最佳政策。虽然简单的减少允许人们应用低温算法来获得$ \ epsilon $ - 最佳政策并达到最坏的最佳速率,但尚不清楚低regret算法是否可以获得实例 - 最佳率的策略识别率。我们表明这是不可能的 - 在遗憾和确定$ \ epsilon $ - 最佳政策之间以最佳的利率确定了基本的权衡。由于我们的负面发现,我们提出了针对PAC表格增强学习实例依赖性样本复杂性的新量度,该方法明确说明了基础MDP中可达到的国家访问分布。然后,我们提出和分析一种基于计划的新型算法,该算法达到了这种样本的复杂性 - 产生的复杂性会随着次要差距和状态的“可达到性”而缩放。我们显示我们的算法几乎是最小的最佳选择,并且在一些示例中,我们实例依赖性样品复杂性比最差案例界限可显着改善。
translated by 谷歌翻译
我们介绍了一种普遍的策略,可实现有效的多目标勘探。它依赖于adagoal,一种基于简单约束优化问题的新的目标选择方案,其自适应地针对目标状态,这既不是太困难也不是根据代理目前的知识达到的。我们展示了Adagoal如何用于解决学习$ \ epsilon $ -optimal的目标条件的政策,以便在$ L $ S_0 $ S_0 $奖励中获得的每一个目标状态,以便在$ S_0 $中获取。免费马尔可夫决策过程。在标准的表格外壳中,我们的算法需要$ \ tilde {o}(l ^ 3 s a \ epsilon ^ { - 2})$探索步骤,这几乎很少最佳。我们还容易在线性混合Markov决策过程中实例化Adagoal,其产生具有线性函数近似的第一目标导向的PAC保证。除了强大的理论保证之外,迈克纳队以现有方法的高级别算法结构为锚定,为目标条件的深度加固学习。
translated by 谷歌翻译
本文为表格马尔可夫决策过程(MDP)提供了第一种多项式时间算法,该算法享受了遗憾的界限\ emph {独立于计划范围}。具体来说,我们考虑具有$ S $州的表格MDP,$ A $ ACTICY,计划范围$ h $,总奖励为$ 1 $,代理商播放$ K $ evipodes。我们设计了一种实现$ o \ left(\ mathrm {poly}(s,a,a,\ log k)\ sqrt {k} \ right)$遗憾的算法(\ mathrm {poly}(s,a,a,\ log k)polylog}(h)$依赖项〜\ citep {zhang2020 reininforcement}或对$ s $〜\ citep {li2021settling}具有指数依赖关系。我们的结果依赖于一系列新的结构引理,从而建立了固定策略的近似能力,稳定性和浓度特性,这些策略可以在与马尔可夫链有关的其他问题中应用。
translated by 谷歌翻译
部分可观察到的马尔可夫决策过程(POMDPS)是加强学习的自然和一般模型,以考虑到代理人对其当前国家的不确定性。在POMDPS的文献中,习惯性地假设在已知参数时计算最佳策略的规划Oracle,即使已知问题是计算的。几乎所有现有的规划算法都在指数时间内运行,缺乏可证明的性能保证,或者需要在每个可能的政策下对转换动态进行强烈的假设。在这项工作中,我们重新审视了规划问题并问:是否有自然和积极的假设,使计划变得容易?我们的主要结果是用于规划(一步)可观察POMDPS的QuasioInomial-time算法。具体而言,我们假设各国的分离良好的分布导致分开的观察分布,因此观察结果在每一步中至少有一些信息。至关重要的是,这个假设没有对POMDP的过渡动态的限制;尽管如此,它意味着近乎最佳的政策承认准简洁的描述,这通常不是真实的(在标准的硬度假设下)。我们的分析基于滤波器稳定性的新定量界限 - 即潜在状态的最佳滤波器的速率忘记其初始化。此外,在指数时间假设下,我们证明了在可观察POMDPS中规划的匹配硬度。
translated by 谷歌翻译
无奖励强化学习(RL)考虑了代理在探索过程中无法访问奖励功能的设置,但必须提出仅在探索后才揭示的任意奖励功能的近乎最佳的政策。在表格环境中,众所周知,这是一个比奖励意识(PAC)RL(代理在探索过程中访问奖励功能)更困难的问题$ | \ Mathcal {s} | $,状态空间的大小。我们表明,在线性MDP的设置中,这种分离不存在。我们首先在$ d $二维线性MDP中开发了一种计算高效算法,其样品复杂度比例为$ \ widetilde {\ Mathcal {o}}(d^2 H^5/\ epsilon^2)$ 。然后,我们显示出$ \ omega(d^2 h^2/\ epsilon^2)$的匹配尺寸依赖性的下限,该限制为奖励感知的RL设置。据我们所知,我们的方法是第一个在线性MDP中实现最佳$ d $依赖性的计算有效算法,即使在单次奖励PAC设置中也是如此。我们的算法取决于一种新的程序,该过程有效地穿越了线性MDP,在任何给定的``特征方向''中收集样品,并在最大状态访问概率(线性MDP等效)中享受最佳缩放样品复杂性。我们表明,该探索过程也可以应用于解决线性MDP中````良好条件''''协变量的问题。
translated by 谷歌翻译
We study time-inhomogeneous episodic reinforcement learning (RL) under general function approximation and sparse rewards. We design a new algorithm, Variance-weighted Optimistic $Q$-Learning (VO$Q$L), based on $Q$-learning and bound its regret assuming completeness and bounded Eluder dimension for the regression function class. As a special case, VO$Q$L achieves $\tilde{O}(d\sqrt{HT}+d^6H^{5})$ regret over $T$ episodes for a horizon $H$ MDP under ($d$-dimensional) linear function approximation, which is asymptotically optimal. Our algorithm incorporates weighted regression-based upper and lower bounds on the optimal value function to obtain this improved regret. The algorithm is computationally efficient given a regression oracle over the function class, making this the first computationally tractable and statistically optimal approach for linear MDPs.
translated by 谷歌翻译
在现实世界的强化学习应用中,学习者的观察空间无处不在,有关手头任务的相关信息和无关紧要。从高维观察中学习一直是监督学习和统计数据(例如,通过稀疏性)进行广泛研究的主题,但是即使在有限的状态/行动(表格)领域,也不能很好地理解强化学习中的类似问题。我们引入了一个新的问题设置,用于增强学习,即马尔可夫决策过程(EXOMDP),其中状态空间将(未知)分解成一个小的(或内源性)组件,并且很大的无关(或外源)组件;外源成分独立于学习者的行为,但以任意的,时间相关的方式演变。我们提供了一种新的算法Exorl,该算法学习了一种近乎最佳的政策,其样品复杂性在内源性组件的大小中多项式,几乎独立于外源成分的大小,从而提供了一个双重指数的改进算法。我们的结果首次突出了在存在外源信息的情况下首次可以进行样品高效的增强学习,并为未来的调查提供了简单,用户友好的基准。
translated by 谷歌翻译
我们研究了情节块MDP中模型估计和无奖励学习的问题。在这些MDP中,决策者可以访问少数潜在状态产生的丰富观察或上下文。我们首先对基于固定行为策略生成的数据估算潜在状态解码功能(从观测到潜在状态的映射)感兴趣。我们在估计此功能的错误率上得出了信息理论的下限,并提出了接近此基本限制的算法。反过来,我们的算法还提供了MDP的所有组件的估计值。然后,我们研究在无奖励框架中学习近乎最佳政策的问题。根据我们有效的模型估计算法,我们表明我们可以以最佳的速度推断出策略(随着收集样品的数量增长大)的最佳策略。有趣的是,我们的分析提供了必要和充分的条件,在这些条件下,利用块结构可以改善样本复杂性,以识别近乎最佳的策略。当满足这些条件时,Minimax无奖励设置中的样本复杂性将通过乘法因子$ n $提高,其中$ n $是可能的上下文数量。
translated by 谷歌翻译
低级MDP已成为研究强化学习中的表示和探索的重要模型。有了已知的代表,存在几种无模型的探索策略。相反,未知表示设置的所有算法都是基于模型的,因此需要对完整动力学进行建模。在这项工作中,我们介绍了低级MDP的第一个无模型表示学习算法。关键的算法贡献是一个新的Minimax表示学习目标,我们为其提供具有不同权衡的变体,其统计和计算属性不同。我们将这一表示的学习步骤与探索策略交织在一起,以无奖励的方式覆盖状态空间。所得算法可证明样品有效,并且可以适应一般函数近似以扩展到复杂的环境。
translated by 谷歌翻译
We incorporate statistical confidence intervals in both the multi-armed bandit and the reinforcement learning problems. In the bandit problem we show that given n arms, it suffices to pull the arms a total of O (n/ε 2 ) log(1/δ) times to find an ε-optimal arm with probability of at least 1 − δ. This bound matches the lower bound of Mannor and Tsitsiklis (2004) up to constants. We also devise action elimination procedures in reinforcement learning algorithms. We describe a framework that is based on learning the confidence interval around the value function or the Q-function and eliminating actions that are not optimal (with high probability). We provide a model-based and a model-free variants of the elimination method. We further derive stopping conditions guaranteeing that the learned policy is approximately optimal with high probability. Simulations demonstrate a considerable speedup and added robustness over ε-greedy Q-learning. * . Preliminary and partial results from this work appeared as extended abstracts in COLT 2002 and ICML 2003.
translated by 谷歌翻译
当前的论文研究在仅假定最佳值函数可线化的设置中,在设置中样本效率增强学习(RL)。最近已经理解,即使在这种看似强大的假设和对生成模型的访问下,最坏情况的样本复杂性也可能是庞大的(即指数)。我们研究了学习者还可以从专家政策中访问交互式演示的设置,并提出一种统计和计算上有效的算法(DELPHI),用于将探索与专家查询融合。特别是,Delphi需要$ \ tilde {\ Mathcal {o}}(d)$专家查询和$ \ texttt {poly} {poly}(d,h,h,| \ mathcal {a} |,1/\ varepsilon)$探索性样本可证明恢复$ \ varepsilon $ -suboptimal策略。与纯RL方法相比,这对应于样品复杂性的指数改善,而专家输入令人惊讶。与先前的模仿学习(IL)方法相比,我们所需的专家演示数量独立于$ h $和$ 1/\ varepsilon $的对数,而所有先前的工作至少需要两者的线性因素,除了对$ $ $ $的依赖性外, D $。为了确定所需的专家查询数量最少,我们表明,在同一环境中,任何其勘探预算是多项式限制的学习者(在$ d,h,$和$ | \ | \ MATHCAL {a} | $方面,需要至少$ \ tilde \ omega(\ sqrt {d})$ oracle调用以恢复与专家的价值函数竞争的策略。在较弱的假设中,专家的政策是线性的,我们表明下限将增加到$ \ tilde \ omega(d)$。
translated by 谷歌翻译