我们开发了两种基本的随机素描技术。惩罚草图(PS)和增强拉格朗日草图(ALS),用于解决一致的线性系统。提出的PS和ALS技术通过引入拉格朗日罚款草图扩展并推广了草图和项目方法的范围。在此过程中,我们将SP方法恢复为特殊情况,并开发出新的随机迭代方法的家庭。通过在拟议的PS方法中改变草图参数,我们恢复了新颖的随机方法,例如牛顿下降,惩罚性kaczmarz,罚款随机下降,惩罚坐标下降,惩罚性高斯追捕和惩罚块Kaczmarz。此外,提出的ALS方法合成了多种新的随机方法,例如增强的牛顿血统,增强的kaczmarz,增强随机下降,增强的坐标下降,增强的高斯匹配以及增强的kaczmarz kaczmarz成为一个框架。此外,我们表明,开发的PS和ALS框架可用于将原始线性系统重新制定为等效的随机优化问题,即惩罚随机重新印度重新制定和增强随机重新印度。我们证明了PS和ALS方法的全局收敛速率以及子线性$ \ Mathcal {O}(\ frac {1} {k} {k})$ ration $ rate cesaro迭代率的$速率。所提出的收敛结果适用于广泛的随机矩阵分布家族,这提供了微调适合特定应用方法的随机性的机会。最后,我们执行的计算实验证明了与现有SP方法相比,我们方法的效率。
translated by 谷歌翻译
我们应用随机顺序二次编程(STOSQP)算法来求解受约束的非线性优化问题,在该问题是随机的,并且约束是确定性的。我们研究了一个完全随机的设置,其中每次迭代中只有一个样本可用于估计物镜的梯度和黑森州。我们允许stosqp选择一个随机架子$ \ bar {\ alpha} _t $适应性,使得$ \ beta_t \ leq \ leq \ bar {\ alpha} _t \ leq \ leq \ beta_t+beta_t+\ chi_t+\ chi_t $,wither = o(\ beta_t)$是预定的确定性序列。我们还允许STOSQP通过随机迭代求解器(例如,使用草图和项目方法)求解牛顿系统。而且我们不需要不精确的牛顿方向的近似误差即可消失。对于这个一般的STOSQP框架,我们建立了其最后一次迭代的渐近收敛速率,最差的案例迭代复杂性是副产品。我们执行统计推断。特别是,有了适当的衰减$ \ beta_t,\ chi_t $,我们表明:(i)STOSQP方案最多可以采用$ o(1/\ epsilon^4)$ iterations $ iterations $ iTerations以实现$ \ epsilon $ -Stationarity; (ii)几乎毫无疑问,$ \ |(x_t -x^\ star,\ lambda_t- \ lambda^\ star)\ | | = o(\ sqrt {\ beta_t \ log(1/\ beta_t)})+o(\ chi_t/\ beta_t)$,其中$(x_t,\ lambda_t)$是primal-dimal-dimal-dialal-dialal-dialal-dual stosqp itselmate; (iii)序列$ 1/\ sqrt {\ beta_t} \ cdot(x_t -x^\ star,\ lambda_t- \ lambda_t- \ lambda^\ star)$收敛到平均零高斯分布,具有非琐事的共价矩阵。此外,我们建立了$(x_t,\ lambda_t)$的Berry-Esseen,以定量地测量其分布功能的收敛性。我们还为协方差矩阵提供了实用的估计器,可以使用iTerates $ \ {(x_t,\ lambda_t)\} _ t $构建$(x^\ star,\ lambda^\ star)$的置信区间(x^\ star,\ lambda^\ star)$。我们的定理使用最可爱的测试集中的非线性问题验证。
translated by 谷歌翻译
最近,“ SP”(随机Polyak步长)方法已成为一种竞争自适应方法,用于设置SGD的步骤尺寸。SP可以解释为专门针对插值模型的方法,因为它求解了插值方程。SP通过使用模型的局部线性化来求解这些方程。我们进一步迈出一步,并开发一种解决模型局部二阶近似的插值方程的方法。我们最终的方法SP2使用Hessian-Vector产品来加快SP的收敛性。此外,在二阶方法中,SP2的设计绝不依赖于正定的Hessian矩阵或目标函数的凸度。我们显示SP2在矩阵完成,非凸测试问题和逻辑回归方面非常有竞争力。我们还提供了关于Quadratics总和的融合理论。
translated by 谷歌翻译
本文研究了拟牛顿方法求解强凸强凹鞍点问题(SPP)。我们提出了SPP一般贪婪Broyden族更新,其中有$明确的局部超线性收敛速度的变体{\mathcalØ}\大(\大(1\压裂{1}{N\卡帕^2}\大)^ {K(K-1)/ 2}\大)$,其中$N $是问题的尺寸,$ \卡帕$是条件数和$$ķ是迭代次数。设计和算法的分析是基于估计不定Hessian矩阵的平方,这是从在凸优化古典准牛顿方法的不同。我们还提出两个具体Broyden族算法与BFGS型和SR1型更新,其享受的$更快的局部收敛速度\mathcalØ\大(\大(1\压裂{1} {N}\大)^{K(K-1)/ 2}\大)$。
translated by 谷歌翻译
本文认为具有非线性耦合约束的多块非斜率非凸优化问题。通过开发使用信息区和提出的自适应制度的想法[J.Bolte,S。Sabach和M. Teboulle,NonConvex Lagrangian优化:监视方案和全球收敛性,运营研究数学,43:1210--1232,2018],我们提出了一种多键交替方向来解决此问题的多块交替方向方法。我们通过在每个块更新中采用大量最小化过程来指定原始变量的更新。进行了独立的收敛分析,以证明生成的序列与增强Lagrangian的临界点的随后和全局收敛。我们还建立了迭代复杂性,并为所提出的算法提供初步的数值结果。
translated by 谷歌翻译
在本文中,我们提出了一个算法框架,称为乘数的惯性交替方向方法(IADMM),用于求解与线性约束线性约束的一类非convex非conmooth多块复合优化问题。我们的框架采用了一般最小化 - 更大化(MM)原理来更新每个变量块,从而不仅统一了先前在MM步骤中使用特定替代功能的AMDM的收敛分析,还导致新的有效ADMM方案。据我们所知,在非convex非平滑设置中,ADMM与MM原理结合使用,以更新每个变量块,而ADMM与\ emph {Primal变量的惯性术语结合在一起}尚未在文献中研究。在标准假设下,我们证明了生成的迭代序列的后续收敛和全局收敛性。我们说明了IADMM对一类非凸低级别表示问题的有效性。
translated by 谷歌翻译
该工作研究限制了随机函数是凸的,并表示为随机函数的组成。问题是在公平分类,公平回归和排队系统设计的背景下出现的。特别令人感兴趣的是甲骨文提供组成函数的随机梯度的大规模设置,目标是用最小对Oracle的调用来解决问题。由于组成形式,Oracle提供的随机梯度不会产生目标或约束梯度的无偏估计。取而代之的是,我们通过跟踪内部函数评估来构建近似梯度,从而导致准差鞍点算法。我们证明,所提出的算法几乎可以肯定地找到最佳和可行的解决方案。我们进一步确定所提出的算法需要$ \ MATHCAL {O}(1/\ EPSILON^4)$数据样本,以便获得$ \ epsilon $ -Approximate-approximate-apptroximate Pointal点,同时也确保零约束违反。该结果与无约束问题的随机成分梯度下降方法的样品复杂性相匹配,并改善了受约束设置的最著名样品复杂性结果。在公平分类和公平回归问题上测试了所提出的算法的功效。数值结果表明,根据收敛速率,所提出的算法优于最新算法。
translated by 谷歌翻译
本文提出了一种针对分布式凸复合优化问题的新型双重不精确拆分算法(DISA),其中本地损耗函数由$ L $ -SMOOTH的项组成,可能是由线性操作员组成的非平滑项。我们证明,当原始和双重尺寸$ \ tau $,$ \ beta $满足$ 0 <\ tau <{2}/{l} $和$ 0 <\ tau \ beta <1 $时,我们证明了DISA是收敛的。与现有的原始双侧近端分裂算法(PD-PSA)相比,DISA克服了收敛步骤范围对线性操作员欧几里得范围的依赖性。这意味着当欧几里得规范大时,DISA允许更大的步骤尺寸,从而确保其快速收敛。此外,我们分别在一般凸度和度量次级性下分别建立了disa的均值和线性收敛速率。此外,还提供了DISA的近似迭代版本,并证明了该近似版本的全局收敛性和sublinear收敛速率。最后,数值实验不仅证实了理论分析,而且还表明,与现有的PD-PSA相比,DISA达到了显着的加速度。
translated by 谷歌翻译
素描和项目是一个框架,它统一了许多已知的迭代方法来求解线性系统及其变体,并进一步扩展了非线性优化问题。它包括流行的方法,例如随机kaczmarz,坐标下降,凸优化的牛顿方法的变体等。在本文中,我们通过新的紧密频谱边界为预期的草图投影矩阵获得了素描和项目的收敛速率的敏锐保证。我们的估计值揭示了素描和项目的收敛率与另一个众所周知但看似无关的算法家族的近似误差之间的联系,这些算法使用草图加速了流行的矩阵因子化,例如QR和SVD。这种连接使我们更接近准确量化草图和项目求解器的性能如何取决于其草图大小。我们的分析不仅涵盖了高斯和次高斯的素描矩阵,还涵盖了一个有效的稀疏素描方法,称为较少的嵌入方法。我们的实验备份了理论,并证明即使极稀疏的草图在实践中也显示出相同的收敛属性。
translated by 谷歌翻译
本文认为,使用一组不平等凸期望约束最小化凸期望函数的问题。我们提出了一种可计算的随机近似类型算法,即乘数的随机线性近端方法来解决此凸随机优化问题。该算法可以粗略地看作是随机近似和传统的乘数近端方法的混合体。在轻度条件下,我们表明该算法表现出$ o(k^{ - 1/2})$预期的收敛速率,如果正确选择了算法中的参数,则客观降低和约束违规率,其中$ k $表示$ k $表示的数量表示迭代。此外,我们表明,算法具有$ o(\ log(k)k^{ - 1/2})$约束违规和$ o(\ log^{3/2}(k)k)^{ - 1/2})$目标结合。一些初步的数值结果证明了所提出的算法的性能。
translated by 谷歌翻译
用于解决无约束光滑游戏的两个最突出的算法是经典随机梯度下降 - 上升(SGDA)和最近引入的随机共识优化(SCO)[Mescheder等,2017]。已知SGDA可以收敛到特定类别的游戏的静止点,但是当前的收敛分析需要有界方差假设。 SCO用于解决大规模对抗问题,但其收敛保证仅限于其确定性变体。在这项工作中,我们介绍了预期的共同胁迫条件,解释了它的好处,并在这种情况下提供了SGDA和SCO的第一次迭代收敛保证,以解决可能是非单调的一类随机变分不等式问题。我们将两种方法的线性会聚到解决方案的邻域时,当它们使用恒定的步长时,我们提出了富有识别的步骤化切换规则,以保证对确切解决方案的融合。此外,我们的收敛保证在任意抽样范式下担保,因此,我们对迷你匹配的复杂性进行了解。
translated by 谷歌翻译
Difference-of-Convex (DC) minimization, referring to the problem of minimizing the difference of two convex functions, has been found rich applications in statistical learning and studied extensively for decades. However, existing methods are primarily based on multi-stage convex relaxation, only leading to weak optimality of critical points. This paper proposes a coordinate descent method for minimizing a class of DC functions based on sequential nonconvex approximation. Our approach iteratively solves a nonconvex one-dimensional subproblem globally, and it is guaranteed to converge to a coordinate-wise stationary point. We prove that this new optimality condition is always stronger than the standard critical point condition and directional point condition under a mild \textit{locally bounded nonconvexity assumption}. For comparisons, we also include a naive variant of coordinate descent methods based on sequential convex approximation in our study. When the objective function satisfies a \textit{globally bounded nonconvexity assumption} and \textit{Luo-Tseng error bound assumption}, coordinate descent methods achieve \textit{Q-linear} convergence rate. Also, for many applications of interest, we show that the nonconvex one-dimensional subproblem can be computed exactly and efficiently using a breakpoint searching method. Finally, we have conducted extensive experiments on several statistical learning tasks to show the superiority of our approach. Keywords: Coordinate Descent, DC Minimization, DC Programming, Difference-of-Convex Programs, Nonconvex Optimization, Sparse Optimization, Binary Optimization.
translated by 谷歌翻译
非滑动优化在许多工程领域中找到了广泛的应用程序。在这项工作中,我们建议利用{随机坐标亚级别方法}(RCS)来求解非平滑凸凸和非平滑凸(非平滑弱弱凸)优化问题。在每次迭代中,RCS随机选择一个块坐标,而不是所有要更新的坐标。由实用应用激发,我们考虑了目标函数的{线性界限亚级别假设},这比Lipschitz的连续性假设要笼统得多。在这样的一般假设下,我们在凸和非凸病例中对RCS进行了彻底的收敛分析,并建立了预期的收敛速率和几乎确定的渐近收敛结果。为了得出这些收敛结果,我们建立了收敛的引理以及弱凸功能的全局度量超值属性与其莫罗膜的关系,它们是基本的和独立的利益。最后,我们进行了几项实验,以显示RC的优势比亚级别方法的优势。
translated by 谷歌翻译
诸如压缩感测,图像恢复,矩阵/张恢复和非负矩阵分子等信号处理和机器学习中的许多近期问题可以作为约束优化。预计的梯度下降是一种解决如此约束优化问题的简单且有效的方法。本地收敛分析将我们对解决方案附近的渐近行为的理解,与全球收敛分析相比,收敛率的较小界限提供了较小的界限。然而,本地保证通常出现在机器学习和信号处理的特定问题领域。此稿件在约束最小二乘范围内,对投影梯度下降的局部收敛性分析提供了统一的框架。该建议的分析提供了枢转局部收敛性的见解,例如线性收敛的条件,收敛区域,精确的渐近收敛速率,以及达到一定程度的准确度所需的迭代次数的界限。为了证明所提出的方法的适用性,我们介绍了PGD的收敛分析的配方,并通过在四个基本问题上的配方的开始延迟应用来证明它,即线性约束最小二乘,稀疏恢复,最小二乘法使用单位规范约束和矩阵完成。
translated by 谷歌翻译
稀疏数据的恢复是机器学习和信号处理中许多应用的核心。虽然可以使用$ \ ell_1 $ -regularization在套索估算器中使用此类问题,但在基础上,通常需要专用算法来解决大型实例的相应高维非平滑优化。迭代地重新重复的最小二乘(IRLS)是一种广泛使用的算法,其出于其优异的数值性能。然而,虽然现有理论能够保证该算法的收敛到最小化器,但它不提供全局收敛速度。在本文中,我们证明了IRLS的变型以全局线性速率收敛到稀疏解决方案,即,如果测量结果满足通常的空空间属性假设,则立即发生线性误差。我们通过数值实验支持我们的理论,表明我们的线性速率捕获了正确的维度依赖性。我们预计我们的理论调查结果将导致IRLS算法的许多其他用例的新见解,例如在低级矩阵恢复中。
translated by 谷歌翻译
非convex受限的优化问题可用于模拟许多机器学习问题,例如多级Neyman-Pearson分类和受限的Markov决策过程。但是,由于目标和约束可能是非概念,因此这些问题都是具有挑战性的,因此很难平衡减少损失价值和减少约束违规行为的平衡。尽管有几种方法可以解决此类问题,但它们都是双环或三环算法,它们需要Oracles来解决某些子问题,通过在每次迭代中调整多个超级参数,以达到某些准确性。在本文中,我们提出了一种新型的梯度下降和扰动的上升(GDPA)算法,以解决一类平滑的非概念不平等的限制问题。 GDPA是一种原始的偶算法,仅利用目标和约束函数的一阶信息,以交替的方式更新原始变量和双重变量。该算法的关键特征是它是一种单循环算法,其中只需要调整两个步骤尺寸。我们表明,在轻度的规律性条件下,GDPA能够找到非convex功能约束问题的Karush-Kuhn-Tucker(KKT)点,并保证了收敛率。据我们所知,这是第一个可以通过非convex不等式约束来解决一般非凸的平滑问题的单循环算法。与最著名的算法相比,数值结果还显示了GDPA的优越性(就平稳性测量和获得的溶液的可行性而言)。
translated by 谷歌翻译
Q学习长期以来一直是最受欢迎的强化学习算法之一,几十年来,Q学习的理论分析一直是一个活跃的研究主题。尽管对Q-学习的渐近收敛分析的研究具有悠久的传统,但非肿瘤收敛性直到最近才受到积极研究。本文的主要目的是通过控制系统的观点研究马尔可夫观察模型下异步Q学习的新有限时间分析。特别是,我们引入了Q学习的离散时间变化的开关系统模型,并减少了分析的步骤尺寸,这显着改善了使用恒定步骤尺寸的开关系统分析的最新开发,并导致\(\(\)(\) Mathcal {o} \ left(\ sqrt {\ frac {\ log k} {k}}} \ right)\)\)\)\)\)\)\)\)与大多数艺术状态相当或更好。同时,新应用了使用类似转换的技术,以避免通过减小的步骤尺寸提出的分析中的难度。提出的分析带来了其他见解,涵盖了不同的方案,并提供了新的简化模板,以通过其独特的连接与离散时间切换系统的独特联系来加深我们对Q学习的理解。
translated by 谷歌翻译
在本文中,我们研究并证明了拟牛顿算法的Broyden阶级的非渐近超线性收敛速率,包括Davidon - Fletcher - Powell(DFP)方法和泡沫 - 弗莱彻 - 夏诺(BFGS)方法。这些准牛顿方法的渐近超线性收敛率在文献中已经广泛研究,但它们明确的有限时间局部会聚率未得到充分调查。在本文中,我们为Broyden Quasi-Newton算法提供了有限时间(非渐近的)收敛分析,在目标函数强烈凸起的假设下,其梯度是Lipschitz连续的,并且其Hessian在最佳解决方案中连续连续。我们表明,在最佳解决方案的本地附近,DFP和BFGS生成的迭代以$(1 / k)^ {k / 2} $的超连线率收敛到最佳解决方案,其中$ k $是迭代次数。我们还证明了类似的本地超连线收敛结果,因为目标函数是自我协调的情况。几个数据集的数值实验证实了我们显式的收敛速度界限。我们的理论保证是第一个为准牛顿方法提供非渐近超线性收敛速率的效果之一。
translated by 谷歌翻译
通常希望通过将其投影到低维子空间来降低大数据集的维度。矩阵草图已成为一种非常有效地执行这种维度降低的强大技术。尽管有关于草图最差的表现的广泛文献,但现有的保证通常与实践中观察到的差异截然不同。我们利用随机矩阵的光谱分析中的最新发展来开发新技术,这些技术为通过素描获得的随机投影矩阵的期望值提供了准确的表达。这些表达式可以用来表征各种常见的机器学习任务中尺寸降低的性能,从低级别近似到迭代随机优化。我们的结果适用于几种流行的草图方法,包括高斯和拉德马赫草图,它们可以根据数据的光谱特性对这些方法进行精确的分析。经验结果表明,我们得出的表达式反映了这些草图方法的实际性能,直到低阶效应甚至不变因素。
translated by 谷歌翻译
我们在大规模设置中研究一类广义的线性程序(GLP),包括可能简单的非光滑凸规律器和简单的凸集合约束。通过将GLP作为等效凸凹入最大问题的重新介绍,我们表明问题中的线性结构可用于设计高效,可扩展的一阶算法,我们给出了名称\ EMPH {坐标线性方差减少}(\ textsc {clvr};发音为``clever'')。 \ textsc {clvr}是一种增量坐标方法,具有隐式方差差异,输出双变量迭代的\ emph {仿射组合}。 \ textsc {clvr}产生改善的复杂性结果(glp),这取决于(glp)中的线性约束矩阵的最大行标准而不是光谱标准。当正常化术语和约束是可分离的,\ textsc {clvr}承认有效的延迟更新策略,使其复杂性界限与(glp)中的线性约束矩阵的非零元素的数量而不是矩阵尺寸。我们表明,通过引入稀疏连接的辅助变量,可以将基于$ F $ -divergence和Wassersein指标的歧义组的分布稳健优化(DRO)问题进行重新重整为(GLP)。我们补充了我们的理论保证,具有验证我们算法的实际效果的数值实验,无论是在壁钟时间和数据次数方面。
translated by 谷歌翻译