准确的药物反应预测(DRP)是精密药物中至关重要的,挑战性的任务。本文介绍了DRP的新型注意力指导多OMICS集成(AGMI)方法,首先为每个细胞系构建多边图(MEG),然后聚集多个OMICS功能以使用新颖结构预测药物响应,称为图形边缘感知网络(Genet)。我们的AGMI方法首次探讨了使用GNN的全基因组的基于Gene约束的多OMIC集成。CCL和GDSC数据集上的实证实验表明,我们的AGMI主要优于最先进的DRP方法8.3% - 34.2%在四个指标上。我们的数据和代码可在https://github.com/yivan-wyygdsg/agmi获得。
translated by 谷歌翻译
由于肿瘤的异质性,在个性化的基础上预测抗癌药物的临床结局在癌症治疗中具有挑战性。已经采取了传统的计算努力来建模药物反应对通过其分子概况描绘的单个样品的影响,但由于OMICS数据的高维度而发生过度拟合,因此阻碍了临床应用的模型。最近的研究表明,深度学习是通过学习药物和样品之间的学习对准模式来建立药物反应模型的一种有前途的方法。但是,现有研究采用了简单的特征融合策略,仅考虑了整个药物特征,同时忽略了在对齐药物和基因时可能起着至关重要的作用的亚基信息。特此在本文中,我们提出了TCR(基于变压器的癌症药物反应网络),以预测抗癌药物反应。通过利用注意机制,TCR能够在我们的研究中有效地学习药物原子/子结构和分子特征之间的相互作用。此外,设计了双重损耗函数和交叉抽样策略,以提高TCR的预测能力。我们表明,TCR在所有评估矩阵上(一些具有显着改进)的各种数据分裂策略下优于所有其他方法。广泛的实验表明,TCR在独立的体外实验和体内实际患者数据上显示出显着提高的概括能力。我们的研究强调了TCR的预测能力及其对癌症药物再利用和精度肿瘤治疗的潜在价值。
translated by 谷歌翻译
药物 - 药物相互作用(DDIS)可能会阻碍药物的功能,在最坏的情况下,它们可能导致不良药物反应(ADR)。预测所有DDI是一个具有挑战性且关键的问题。大多数现有的计算模型都集成了来自不同来源的药物中心信息,并利用它们作为机器学习分类器中的功能来预测DDIS。但是,这些模型有很大的失败机会,尤其是对于所有信息都没有可用的新药。本文提出了一个新型的HyperGraph神经网络(HYGNN)模型,仅基于用于DDI预测问题的任何药物的微笑串。为了捕获药物的相似性,我们创建了从微笑字符串中提取的药物的化学子结构中创建的超图。然后,我们开发了由新型的基于注意力的超图边缘编码器组成的HYGNN,以使药物的表示形式和解码器,以预测药物对之间的相互作用。此外,我们进行了广泛的实验,以评估我们的模型并将其与几种最新方法进行比较。实验结果表明,我们提出的HYGNN模型有效地预测了DDI,并以最大的ROC-AUC和PR-AUC分别超过基准,分别为97.9%和98.1%。
translated by 谷歌翻译
协同的药物组合为增强治疗功效和减少不良反应提供了巨大的潜力。然而,由于未知的因果疾病信号通路,有效和协同的药物组合预测仍然是一个悬而未决的问题。尽管已经提出了各种深度学习(AI)模型来定量预测药物组合的协同作用。现有深度学习方法的主要局限性是它们本质上是不可解释的,这使得AI模型的结论是对人类专家的非透明度的结论,因此限制了模型结论的鲁棒性和这些模型在现实世界中的实施能力人类医疗保健。在本文中,我们开发了一个可解释的图神经网络(GNN),该神经网络(GNN)揭示了通过挖掘非常重要的亚分子网络来揭示协同(MOS)的基本基本治疗靶标和机制。可解释的GNN预测模型的关键点是一个新颖的图池层,基于自我注意的节点和边缘池(此后为SANEPOOL),可以根据节点特征和图表计算节点和边缘的注意力评分(重要性)拓扑。因此,提出的GNN模型提供了一种系统的方法来预测和解释基于检测到的关键亚分子网络的药物组合协同作用。我们评估了来自NCI Almanac药物组合筛查数据的46个核心癌症信号通路和药物组合的基因制造的分子网络。实验结果表明,1)Sanepool可以在其他流行的图神经网络中实现当前的最新性能; 2)由SANEPOOOL检测到的亚分子网络是可自我解释的,并且可以鉴定协同的药物组合。
translated by 谷歌翻译
我们提出了分子法律网络(MOOMIN)一种由阿斯利康肿瘤学家使用的多模式图神经网络,以预测用于癌症治疗的药物组合的协同作用。我们的模型基于药物蛋白质相互作用网络和元数据以多种尺度学习药物表示。对化合物和蛋白质的结构特性进行编码,以创建在双方相互作用图上运行的消息通话方案的顶点特征。传播消息形成多分辨率的药物表示,我们用来创建药物对描述符。通过调节癌细胞类型的药物组合表示形式,我们定义了一种协同评分功能,该功能可以感应地评分看不见的药物对。有关协同评分任务的实验结果表明,穆明的表现优于最先进的图形指纹,保持节点嵌入以及现有的深度学习方法。进一步的结果表明,我们的模型的预测性能对超参数变化是可靠的。我们证明该模型可以在癌细胞系组织中进行高质量的预测,样本外预测可以通过外部协同效应数据库进行验证,并且所提出的模型在学习方面有效。
translated by 谷歌翻译
学习表达性分子表示对于促进分子特性的准确预测至关重要。尽管图形神经网络(GNNS)在分子表示学习中取得了显着进步,但它们通常面临诸如邻居探索,不足,过度光滑和过度阵列之类的局限性。同样,由于参数数量大,GNN通常具有较高的计算复杂性。通常,当面对相对大尺寸的图形或使用更深的GNN模型体系结构时,这种限制会出现或增加。克服这些问题的一个想法是将分子图简化为小型,丰富且有益的信息,这更有效,更具挑战性的培训GNN。为此,我们提出了一个新颖的分子图粗化框架,名为FUNQG利用函数组,作为分子的有影响力的构件来确定其性质,基于称为商图的图理论概念。通过实验,我们表明所产生的信息图比分子图小得多,因此是训练GNN的良好候选者。我们将FUNQG应用于流行的分子属性预测基准,然后比较所获得的数据集上的GNN体系结构的性能与原始数据集上的几个最先进的基线。通过实验,除了其参数数量和低计算复杂性的急剧减少之外,该方法除了其急剧减少之外,在各种数据集上的表现显着优于先前的基准。因此,FUNQG可以用作解决分子表示学习问题的简单,成本效益且可靠的方法。
translated by 谷歌翻译
Cancer is one of the leading causes of death worldwide. It is caused by a variety of genetic mutations, which makes every instance of the disease unique. Since chemotherapy can have extremely severe side effects, each patient requires a personalized treatment plan. Finding the dosages that maximize the beneficial effects of the drugs and minimize their adverse side effects is vital. Deep neural networks automate and improve drug selection. However, they require a lot of data to be trained on. Therefore, there is a need for machine-learning approaches that require less data. Hybrid quantum neural networks were shown to provide a potential advantage in problems where training data availability is limited. We propose a novel hybrid quantum neural network for drug response prediction, based on a combination of convolutional, graph convolutional, and deep quantum neural layers of 8 qubits with 363 layers. We test our model on the reduced Genomics of Drug Sensitivity in Cancer dataset and show that the hybrid quantum model outperforms its classical analog by 15% in predicting IC50 drug effectiveness values. The proposed hybrid quantum machine learning model is a step towards deep quantum data-efficient algorithms with thousands of quantum gates for solving problems in personalized medicine, where data collection is a challenge.
translated by 谷歌翻译
在本文中,我们提供了针对深度学习(DL)模型的结构化文献分析,该模型用于支持癌症生物学的推论,并特别强调了多词分析。这项工作着重于现有模型如何通过先验知识,生物学合理性和解释性,生物医学领域的基本特性来解决更好的对话。我们讨论了DL模型的最新进化拱门沿整合先前的生物关系和网络知识的方向,以支持更好的概括(例如途径或蛋白质 - 蛋白质相互作用网络)和解释性。这代表了向模型的基本功能转变,该模型可以整合机械和统计推断方面。我们讨论了在此类模型中整合域先验知识的代表性方法。该论文还为解释性和解释性的当代方法提供了关键的看法。该分析指向编码先验知识和改善解释性之间的融合方向。
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
多药物(定义为使用多种药物)是一种标准治疗方法,尤其是对于严重和慢性疾病。但是,将多种药物一起使用可能会导致药物之间的相互作用。药物 - 药物相互作用(DDI)是一种与另一种药物结合时的影响发生变化时发生的活性。 DDI可能会阻塞,增加或减少药物的预期作用,或者在最坏情况下,会产生不利的副作用。虽然准时检测DDI至关重要,但由于持续时间短,并且在临床试验中识别它们是时间的,而且昂贵,并且要考虑许多可能的药物对进行测试。结果,需要计算方法来预测DDI。在本文中,我们提出了一种新型的异质图注意模型Han-DDI,以预测药物 - 药物相互作用。我们建立了具有不同生物实体的药物网络。然后,我们开发了一个异质的图形注意网络,以使用药物与其他实体的关系学习DDI。它由一个基于注意力的异质图节点编码器组成,用于获得药物节点表示和用于预测药物相互作用的解码器。此外,我们利用全面的实验来评估我们的模型并将其与最先进的模型进行比较。实验结果表明,我们提出的方法Han-DDI的表现可以显着,准确地预测DDI,即使对于新药也是如此。
translated by 谷歌翻译
高通量药物筛查测定法的最新出现引发了机器学习方法的密集开发,包括预测癌细胞系对抗癌药物的敏感性的模型,以及用于生成潜在药物候选者的方法。然而,尚未全面探索具有特定特性的化合物产生具有特定特性和同时建模其功效的概念。为了满足这一需求,我们提出了Vadeers,这是一种基于各种自动编码器的药物功效估算推荐系统。化合物的产生是由具有半监视的高斯混合模型(GMM)的新型自动编码器进行的。先验定义了在潜在空间中的聚类,其中簇与特定的药物特性相关联。此外,Vadeers配备了单元线自动编码器和灵敏度预测网络。该模型结合了抗癌药物的微笑弦表示的数据,它们对蛋白激酶的抑制作用,细胞系生物学特征以及细胞系对药物的敏感性的测量。评估的Vadeers变体在真实和预测的药物敏感性估计之间达到了较高的R = 0.87 Pearson相关性。我们以一种方式训练GMM先验,使潜在空间中的簇通过其抑制作用对应于药物的预计聚类。我们表明,学到的潜在表示和新生成的数据点准确地反映了给定的聚类。总而言之,Vadeers提供了一种全面的药物和细胞系特性模型及其之间的关系,以及引导的新型化合物。
translated by 谷歌翻译
自引入以来,图形注意力网络在图表表示任务中取得了出色的结果。但是,这些网络仅考虑节点之间的成对关系,然后它们无法完全利用许多现实世界数据集中存在的高阶交互。在本文中,我们介绍了细胞注意网络(CANS),这是一种在图表上定义的数据上运行的神经体系结构,将图表示为介绍的细胞复合物的1个骨骼,以捕获高阶相互作用。特别是,我们利用细胞复合物中的下层和上层社区来设计两种独立的掩盖自我发项机制,从而推广了常规的图形注意力策略。罐中使用的方法是层次结构的,并结合了以下步骤:i)从{\ it node demantion}中学习{\ it Edge功能}的提升算法}; ii)一种细胞注意机制,可以在下层和上邻居上找到边缘特征的最佳组合; iii)层次{\ it Edge Pooling}机制,以提取一组紧凑的有意义的功能集。实验结果表明,CAN是一种低复杂性策略,它与基于图的学​​习任务的最新结果相比。
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
刺激:鉴定药物靶标相互作用(DTIS)是药物重新定位的关键步骤。近年来,大量基因组学和药理学数据的积累已经形成了大众药物和目标相关的异构网络(HNS),这提供了开发基于HN的计算模型的新机遇,以准确地预测DTI。 HN意味着许多有关DTI的有用信息,还包含无关的数据,以及如何使最佳的异构网络仍然是一个挑战。结果:在本文中,我们提出了一种基于异构的图形自动元路径学习的DTI预测方法(Hampdti)。 Hampdti从HN自动学习药物和目标之间的重要元路径,并产生元路径图。对于每个元路径图,从药物分子图和靶蛋白序列中学习的特征用作节点属性,然后设计了有效地考虑节点类型信息(药物或目标)的节点类型特定图卷积网络(NSGCN)学习药物和目标的嵌入。最后,组合来自多个元路径图的嵌入式以预测新的DTI。基准数据集的实验表明,与最先进的DTI预测方法相比,我们提出的Hampdti实现了卓越的性能。更重要的是,Hampdti识别DTI预测的重要元路径,这可以解释药物如何与HNS中的目标连接。
translated by 谷歌翻译
尽管图形神经网络(GNNS)已成功地用于节点分类任务并在图中链接预测任务,但学习图级表示仍然是一个挑战。对于图级表示,重要的是要学习相邻节点的表示形式,即聚合和图形结构信息。为此目标开发了许多图形合并方法。但是,大多数现有的合并方法都使用K-HOP社区,而无需考虑图中的明确结构信息。在本文中,我们提出了使用先前的图形结构来克服限制的结构原型指导池(SPGP)。 SPGP将图形结构制定为可学习的原型向量,并计算节点和原型矢量之间的亲和力。这导致了一种新颖的节点评分方案,该方案在封装图形的有用结构的同时优先考虑信息性节点。我们的实验结果表明,SPGP的精度和可扩展性都优于图形分类基准数据集上的最先进的图形合并方法。
translated by 谷歌翻译
来自最近的研究的日益增长的证据意味着MicroRNA或miRNA可以作为各种复杂人类疾病中的生物标志物。由于湿实验室实验昂贵且耗时,MiRNA疾病协会预测的计算技术近年来引起了很多关注。数据稀缺是建立可靠机器学习模式的主要挑战之一。数据稀缺结合使用预先计算的手工制作输入功能导致了过度装备和数据泄漏的问题。我们通过提出一种基于新的多任务图卷积的方法来克服现有作品的局限性,我们称之为粘基。杀菌允许自动特征提取,同时将知识与五个异质生物信息来源(miRNA /疾病和蛋白质编码基因(PCG)之间的相互作用,多任务设置中的蛋白质编码基因,miRNA家族信息和病理学之间的相互作用。这是一种新颖的视角,并未在之前进行过。为了有效地测试我们模型的泛化能力,我们在标准基准数据集中构建了大规模实验,以及我们提出的更大的独立测试集和案例研究。杀螨物显示出在HMDDV2.0和HMDDV3.0数据集上的5倍CV评估中的至少3%,并且在较大独立的测试集上至少35%,并在最先进的方法上具有看不见的miRNA和疾病。我们分享我们的重复性和未来研究代码,以便在https://git.l3s.uni-hannover.de/dong/cmtt。
translated by 谷歌翻译
我们提出了一种新型的图形神经网络(GNN)方法,用于高通量显微镜视频中的细胞跟踪。通过将整个延时序列建模为直接图,其中细胞实例由其节点及其边缘表示,我们通过查找图中的最大路径来提取整个细胞轨迹。这是由纳入端到端深度学习框架中的几个关键贡献来完成的。我们利用深度度量学习算法来提取细胞特征向量,以区分不同生物细胞的实例并组装相同的细胞实例。我们引入了一种新的GNN块类型,该类型可以对节点和边缘特征向量进行相互更新,从而促进基础消息传递过程。消息传递概念的范围由GNN块的数量确定,这是至关重要的,因为它可以在连续的框架中实现节点和边缘之间的“节点和边缘”之间的“流动”。最后,我们解决了边缘分类问题,并使用已确定的活动边缘来构建单元格的轨道和谱系树。我们通过将其应用于不同细胞类型,成像设置和实验条件的2D和3D数据集,来证明所提出的细胞跟踪方法的强度。我们表明,我们的框架在大多数评估的数据集上都优于当前最新方法。该代码可在我们的存储库中获得:https://github.com/talbenha/cell-tracker-gnn。
translated by 谷歌翻译
抗癌药物的发现是偶然的,我们试图介绍开放的分子图学习基准,称为Cantidrug4cancer,这是一个具有挑战性且逼真的基准数据集,可促进可扩展,健壮和可重复的图形机器学习用于抗癌药物发现的机器学习研究。候选物4CANCER数据集涵盖了多个最多的癌症靶标,涵盖了54869个与癌症相关的药物分子,其范围从临床前,临床和FDA批准的范围内。除了构建数据集外,我们还使用描述符和表达性图神经网络进行了有效的药物靶点相互作用(DTI)预测基准的基准实验。实验结果表明,候选物4Cancer在实际应用中对学习分子图和目标提出了重大挑战,这表明将来有机会开发用于治疗癌症的候选药物的研究。
translated by 谷歌翻译
由于多药的组合被广泛应用,因此准确的药物相互作用(DDI)的准确预测变得越来越关键。在我们的方法中,我们使用图代表药物相互作用:节点代表药物;边缘代表药物相互作用。基于我们的假设,我们将DDI的预测转换为链接预测问题,利用已知的药物节点特性和DDI类型来预测未知的DDI类型。这项工作提出了一个图形距离神经网络(GDNN),以预测药物 - 药物相互作用。首先,GDNN通过目标点方法生成节点的初始特征,完全包括图中的距离信息。其次,GDNN采用改进的消息传递框架来更好地生成每个药物节点嵌入式表达式,全面考虑节点和边缘的特征。第三,GDNN聚集了嵌入式表达式,经过MLP处理以生成最终预测的药物相互作用类型。 GDNN在OGB-DDI数据集上实现了hits@20 = 0.9037,证明GDNN可以有效地预测DDI。
translated by 谷歌翻译
多模式单细胞技术的最新进展已使从同一细胞中的多个OMICS数据同时采集,从而更深入地了解细胞状态和动力学。但是,从多模式数据,模拟模式之间的关系并更重要的是,将大量的单模式数据集纳入下游分析是一项挑战。为了应对这些挑战并相应地促进了多模式的单细胞数据分析,已经引入了三个关键任务:$ \ textit {模式预测} $,$ \ textit {modital {modital {modational conterative} $和$ \ textit {intimit {interion {intim interding} $。在这项工作中,我们提出了一个通用图形神经网络框架$ \ textit {scmognn} $来解决这三个任务,并表明$ \ textit {scmognn} $与最新的任务相比,在所有三个任务中都表现出了卓越的结果。艺术和传统方法。我们的方法是\ textit {模式预测}的整体排名的官方获奖者,来自神经2021竞赛\ footNote {\ url {https://openproblems.bio/neurips_2021/}},我们的所有方法都已整合到我们的所有实现中舞蹈软件包\ footNote {\ url {https://github.com/omicsml/dance}}}。
translated by 谷歌翻译