多模式单细胞技术的最新进展已使从同一细胞中的多个OMICS数据同时采集,从而更深入地了解细胞状态和动力学。但是,从多模式数据,模拟模式之间的关系并更重要的是,将大量的单模式数据集纳入下游分析是一项挑战。为了应对这些挑战并相应地促进了多模式的单细胞数据分析,已经引入了三个关键任务:$ \ textit {模式预测} $,$ \ textit {modital {modital {modational conterative} $和$ \ textit {intimit {interion {intim interding} $。在这项工作中,我们提出了一个通用图形神经网络框架$ \ textit {scmognn} $来解决这三个任务,并表明$ \ textit {scmognn} $与最新的任务相比,在所有三个任务中都表现出了卓越的结果。艺术和传统方法。我们的方法是\ textit {模式预测}的整体排名的官方获奖者,来自神经2021竞赛\ footNote {\ url {https://openproblems.bio/neurips_2021/}},我们的所有方法都已整合到我们的所有实现中舞蹈软件包\ footNote {\ url {https://github.com/omicsml/dance}}}。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
生物医学网络是与疾病网络的蛋白质相互作用的普遍描述符,从蛋白质相互作用,一直到医疗保健系统和科学知识。随着代表学习提供强大的预测和洞察的显着成功,我们目睹了表现形式学习技术的快速扩展,进入了这些网络的建模,分析和学习。在这篇综述中,我们提出了一个观察到生物学和医学中的网络长期原则 - 而在机器学习研究中经常出口 - 可以为代表学习提供概念基础,解释其当前的成功和限制,并告知未来进步。我们综合了一系列算法方法,即在其核心利用图形拓扑到将网络嵌入到紧凑的向量空间中,并捕获表示陈述学习证明有用的方式的广度。深远的影响包括鉴定复杂性状的变异性,单细胞的异心行为及其对健康的影响,协助患者的诊断和治疗以及制定安全有效的药物。
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
图表学习目的旨在将节点内容与图形结构集成以学习节点/图表示。然而,发现许多现有的图形学习方法在具有高异性级别的数据上不能很好地工作,这是不同类标签之间很大比例的边缘。解决这个问题的最新努力集中在改善消息传递机制上。但是,尚不清楚异质性是否确实会损害图神经网络(GNNS)的性能。关键是要展现一个节点与其直接邻居之间的关系,例如它们是异性还是同质性?从这个角度来看,我们在这里研究了杂质表示在披露连接节点之间的关系之前/之后的杂音表示的作用。特别是,我们提出了一个端到端框架,该框架既学习边缘的类型(即异性/同质性),并利用边缘类型的信息来提高图形神经网络的表现力。我们以两种不同的方式实施此框架。具体而言,为了避免通过异质边缘传递的消息,我们可以通过删除边缘分类器鉴定的异性边缘来优化图形结构。另外,可以利用有关异性邻居的存在的信息进行特征学习,因此,设计了一种混合消息传递方法来汇总同质性邻居,并根据边缘分类使异性邻居多样化。广泛的实验表明,在整个同质级别的多个数据集上,通过在多个数据集上提出的框架对GNN的绩效提高了显着提高。
translated by 谷歌翻译
近年来,图形神经网络(GNNS)在许多现实世界中的应用(例如建议和药物发现)中取得了巨大的成功。尽管取得了成功,但已将过度厚度确定为限制GNN绩效的关键问题之一。这表明由于堆叠聚合器,学到的节点表示是无法区分的。在本文中,我们提出了一种新的观点,以研究深度GNN的性能降低,即特征过度相关。通过有关此问题的经验和理论研究,我们证明了更深层次的GNN中的特征过度相关的存在,并揭示了导致该问题的潜在原因。为了减少功能相关性,我们提出了一个通用框架,可以鼓励GNN编码较少的冗余信息。广泛的实验表明,Decorr可以帮助实现更深入的GNN,并与现有的技术相辅相成。
translated by 谷歌翻译
异质图卷积网络在解决异质网络数据的各种网络分析任务方面已广受欢迎,从链接预测到节点分类。但是,大多数现有作品都忽略了多型节点之间的多重网络的关系异质性,而在元路径中,元素嵌入中关系的重要性不同,这几乎无法捕获不同关系跨不同关系的异质结构信号。为了应对这一挑战,这项工作提出了用于异质网络嵌入的多重异质图卷积网络(MHGCN)。我们的MHGCN可以通过多层卷积聚合自动学习多重异质网络中不同长度的有用的异质元路径相互作用。此外,我们有效地将多相关结构信号和属性语义集成到学习的节点嵌入中,并具有无监督和精选的学习范式。在具有各种网络分析任务的五个现实世界数据集上进行的广泛实验表明,根据所有评估指标,MHGCN与最先进的嵌入基线的优势。
translated by 谷歌翻译
图表神经网络(GNNS)已广泛应用于推荐任务,并获得了非常吸引人的性能。然而,大多数基于GNN的推荐方法在实践中遭受数据稀疏问题。同时,预训练技术在减轻了各个领域(如自然语言处理(NLP)和计算机视觉(CV)等域中的数据稀疏而取得了巨大成功。因此,图形预培训具有扩大基于GNN的建议的数据稀疏的巨大潜力。但是,预先培训GNN,建议面临独特的挑战。例如,不同推荐任务中的用户项交互图具有不同的用户和项目集,并且它们通常存在不同的属性。因此,在NLP和CV中常用的成功机制将知识从预训练任务转移到下游任务,例如共享所学习的嵌入式或特征提取器,而不是直接适用于现有的基于GNN的推荐模型。为了解决这些挑战,我们精致地设计了一个自适应图形预训练框架,用于本地化协作滤波(适应)。它不需要传输用户/项目嵌入式,并且能够跨越不同图的共同知识和每个图形的唯一性。广泛的实验结果表明了适应的有效性和优越性。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
学习有效的蛋白质表示在生物学的各种任务中至关重要,例如预测蛋白质功能或结构。现有的方法通常在大量未标记的氨基酸序列上预先蛋白质语言模型,然后在下游任务中使用一些标记的数据来对模型进行修复。尽管基于序列的方法具有有效性,但尚未探索蛋白质性能预测的已知蛋白质结构的预处理功能,尽管蛋白质结构已知是蛋白质功能的决定因素,但尚未探索。在本文中,我们建议根据其3D结构预处理蛋白质。我们首先提出一个简单而有效的编码器,以学习蛋白质的几何特征。我们通过利用多视图对比学习和不同的自我预测任务来预先蛋白质图编码器。对功能预测和折叠分类任务的实验结果表明,我们提出的预处理方法表现优于或与最新的基于最新的序列方法相提并论,同时使用较少的数据。我们的实施可在https://github.com/deepgraphlearning/gearnet上获得。
translated by 谷歌翻译
数据插补是处理缺失数据的有效方法,这在实际应用中很常见。在这项研究中,我们提出并测试一个实现两个重要目标的新型数据归合过程:(1)保留观测值之间的行相似性和功能矩阵中特征之间的列背景关系,以及(2)量身定制插补。处理特定下游标签预测任务。所提出的插补过程使用变压器网络和图形结构学习来迭代地完善观察值之间特征和相似性之间的上下文关系。此外,它使用一个元学习框架来选择对下游预测任务影响的功能。我们对现实世界中的大数据集进行实验,并表明所提出的插补过程始终在各种基准方法上改善插补和标签预测性能。
translated by 谷歌翻译
无创医学神经影像学已经对大脑连通性产生了许多发现。开发了几种实质技术绘制形态,结构和功能性脑连接性,以创建人脑中神经元活动的全面路线图。依靠其非欧国人数据类型,图形神经网络(GNN)提供了一种学习深图结构的巧妙方法,并且它正在迅速成为最先进的方法,从而导致各种网络神经科学任务的性能增强。在这里,我们回顾了当前基于GNN的方法,突出了它们在与脑图有关的几种应用中使用的方式,例如缺失的脑图合成和疾病分类。最后,我们通过绘制了通往网络神经科学领域中更好地应用GNN模型在神经系统障碍诊断和人群图整合中的路径。我们工作中引用的论文列表可在https://github.com/basiralab/gnns-inns-intwork-neuroscience上找到。
translated by 谷歌翻译
Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, substantial research efforts have been devoted to applying deep learning methods to graphs, resulting in beneficial advances in graph analysis techniques. In this survey, we comprehensively review the different types of deep learning methods on graphs. We divide the existing methods into five categories based on their model architectures and training strategies: graph recurrent neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial methods. We then provide a comprehensive overview of these methods in a systematic manner mainly by following their development history. We also analyze the differences and compositions of different methods. Finally, we briefly outline the applications in which they have been used and discuss potential future research directions.
translated by 谷歌翻译
Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
translated by 谷歌翻译
图形神经网络(GNN)在学习强大的节点表示中显示了令人信服的性能,这些表现在保留节点属性和图形结构信息的强大节点表示中。然而,许多GNNS在设计有更深的网络结构或手柄大小的图形时遇到有效性和效率的问题。已经提出了几种采样算法来改善和加速GNN的培训,但他们忽略了解GNN性能增益的来源。图表数据中的信息的测量可以帮助采样算法来保持高价值信息,同时消除冗余信息甚至噪声。在本文中,我们提出了一种用于GNN的公制引导(MEGUIDE)子图学习框架。 MEGUIDE采用两种新颖的度量:功能平滑和连接失效距离,以指导子图采样和迷你批次的培训。功能平滑度专为分析节点的特征而才能保留最有价值的信息,而连接失败距离可以测量结构信息以控制子图的大小。我们展示了MEGUIDE在多个数据集上培训各种GNN的有效性和效率。
translated by 谷歌翻译
图表神经网络(GNNS)最近在人工智能(AI)领域的普及,这是由于它们作为输入数据相对非结构化数据类型的独特能力。尽管GNN架构的一些元素在概念上类似于传统神经网络(以及神经网络变体)的操作中,但是其他元件代表了传统深度学习技术的偏离。本教程通过整理和呈现有关GNN最常见和性能变种的动机,概念,数学和应用的细节,将GNN的权力和新颖性暴露给AI从业者。重要的是,我们简明扼要地向实际示例提出了本教程,从而为GNN的主题提供了实用和可访问的教程。
translated by 谷歌翻译
Machine learning on graphs is an important and ubiquitous task with applications ranging from drug design to friendship recommendation in social networks. The primary challenge in this domain is finding a way to represent, or encode, graph structure so that it can be easily exploited by machine learning models. Traditionally, machine learning approaches relied on user-defined heuristics to extract features encoding structural information about a graph (e.g., degree statistics or kernel functions). However, recent years have seen a surge in approaches that automatically learn to encode graph structure into low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality reduction. Here we provide a conceptual review of key advancements in this area of representation learning on graphs, including matrix factorization-based methods, random-walk based algorithms, and graph neural networks. We review methods to embed individual nodes as well as approaches to embed entire (sub)graphs. In doing so, we develop a unified framework to describe these recent approaches, and we highlight a number of important applications and directions for future work.
translated by 谷歌翻译
用于异质图嵌入的图形神经网络是通过探索异质图的异质性和语义来将节点投射到低维空间中。但是,一方面,大多数现有的异质图嵌入方法要么不足以对特定语义下的局部结构进行建模,要么在汇总信息时忽略异质性。另一方面,来自多种语义的表示形式未全面整合以获得多功能节点嵌入。为了解决该问题,我们通过引入多视图表示学习的概念,提出了一个具有多视图表示学习(名为MV-HETGNN)的异质图神经网络(称为MV-HETGNN)。所提出的模型由节点特征转换,特定于视图的自我图编码和自动多视图融合,以彻底学习复杂的结构和语义信息,以生成全面的节点表示。在三个现实世界的异质图数据集上进行的广泛实验表明,所提出的MV-HETGNN模型始终优于各种下游任务中所有最新的GNN基准,例如节点分类,节点群集和链接预测。
translated by 谷歌翻译
鉴于在现实世界应用中大规模图的流行率,训练神经模型的存储和时间引起了人们的关注。为了减轻关注点,我们提出和研究图形神经网络(GNNS)的图形凝结问题。具体而言,我们旨在将大型原始图凝结成一个小的,合成的和高度信息的图,以便在小图和大图上训练的GNN具有可比性的性能。我们通过优化梯度匹配损失并设计一种凝结节点期货和结构信息的策略来模仿原始图上的GNN训练轨迹,以解决凝结问题。广泛的实验证明了所提出的框架在将不同的图形数据集凝结成信息较小的较小图中的有效性。特别是,我们能够在REDDIT上近似于95.3%的原始测试准确性,Flickr的99.8%和CiteSeer的99.0%,同时将其图形尺寸降低了99.9%以上,并且可以使用冷凝图来训练各种GNN架构Code在https://github.com/chandlerbang/gcond上发布。
translated by 谷歌翻译
图形神经网络(GNNS)在提供图形结构时良好工作。但是,这种结构可能并不总是在现实世界应用中可用。该问题的一个解决方案是推断任务特定的潜在结构,然后将GNN应用于推断的图形。不幸的是,可能的图形结构的空间与节点的数量超级呈指数,因此任务特定的监督可能不足以学习结构和GNN参数。在这项工作中,我们提出了具有自我监督或拍打的邻接和GNN参数的同时学习,这是通过自我监督来推断图形结构的更多监督的方法。一个综合实验研究表明,缩小到具有数十万个节点的大图和胜过了几种模型,以便在已建立的基准上学习特定于任务的图形结构。
translated by 谷歌翻译