高斯工艺(GP)是一种广泛的工具,用于依次优化黑框功能,其中评估昂贵且潜在的嘈杂。关于GP土匪的最新作品提议超越随机噪声,并设计算法对对抗性攻击的强大。本文从攻击者的角度研究了这个问题,提出了各种对抗性攻击方法,对攻击者的力量和先前信息的假设有所不同。我们的目标是从理论和实践的角度了解对GP土匪的对抗性攻击。我们主要关注对流行的GP-UCB算法的有针对性攻击和基于消除的算法的相关算法,基于对抗性扰动该函数$ f $以产生另一个函数$ \ tilde $ \ tilde {f} $,其Optima在某些目标区域中$ \ \ Mathcal {r} _ {\ rm target} $。根据我们的理论分析,我们设计了白盒攻击(已知$ F $)和黑盒攻击(未知$ F $),前者包括减法攻击和裁剪攻击,以及后者,包括激进的减法攻击。我们证明,对GP土匪的对抗性攻击也可以成功强迫该算法向$ \ Mathcal {R} _ {\ rm Target} $,即使在低攻击预算的情况下,我们也可以测试攻击对各种客观功能的有效性。
translated by 谷歌翻译
在本文中,我们介绍了一个多武装的强盗问题被称为MAX-MIN分组的匪徒,其中臂在可能重叠的群体中排列,并且目标是找到最糟糕的均值奖励的组。此问题对推荐系统等应用感兴趣,并且与广泛研究的鲁棒优化问题也密切相关。我们呈现了两种基于算法的连续消除和稳健的优化,并导出了样本数量的上限,以保证找到最大最佳或近最佳组,以及算法无关的下限。我们讨论了各种兴趣案件中我们界的紧绷程度,以及衍生均匀紧张的界限。
translated by 谷歌翻译
我们研究对线性随机匪徒的对抗攻击:通过操纵奖励,对手旨在控制匪徒的行为。也许令人惊讶的是,我们首先表明某些攻击目标永远无法实现。这与无上下文的随机匪徒形成了鲜明的对比,并且本质上是由于线性随机陆上的臂之间的相关性。在这一发现的激励下,本文研究了$ k $武装的线性匪徒环境的攻击性。我们首先根据武器上下文向量的几何形状提供了攻击性的完全必要性和充分性表征。然后,我们提出了针对Linucb和鲁棒相消除的两阶段攻击方法。该方法首先断言给定环境是否可攻击;而且,如果是的话,它会付出巨大的奖励,以强迫算法仅使用sublinear成本来拉动目标臂线性时间。数值实验进一步验证了拟议攻击方法的有效性和成本效益。
translated by 谷歌翻译
我们考虑基于嘈杂的强盗反馈优化黑盒功能的问题。内核强盗算法为此问题显示了强大的实证和理论表现。然而,它们严重依赖于模型所指定的模型,并且没有它可能会失败。相反,我们介绍了一个\ emph {isspecified}内塞的强盗设置,其中未知函数可以是$ \ epsilon $ - 在一些再现内核希尔伯特空间(RKHS)中具有界限范数的函数均匀近似。我们设计高效实用的算法,其性能在模型误操作的存在下最微小地降低。具体而言,我们提出了一种基于高斯过程(GP)方法的两种算法:一种乐观的EC-GP-UCB算法,需要了解误操作误差,并相断的GP不确定性采样,消除型算法,可以适应未知模型拼盘。我们在$ \ epsilon $,时间范围和底层内核方面提供累积遗憾的上限,我们表明我们的算法达到了$ \ epsilon $的最佳依赖性,而没有明确的误解知识。此外,在一个随机的上下文设置中,我们表明EC-GP-UCB可以有效地与遗憾的平衡策略有效地结合,尽管不知道$ \ epsilon $尽管不知道,但仍然可以获得类似的遗憾范围。
translated by 谷歌翻译
We propose the Square Attack, a score-based black-box l2and l∞-adversarial attack that does not rely on local gradient information and thus is not affected by gradient masking. Square Attack is based on a randomized search scheme which selects localized squareshaped updates at random positions so that at each iteration the perturbation is situated approximately at the boundary of the feasible set. Our method is significantly more query efficient and achieves a higher success rate compared to the state-of-the-art methods, especially in the untargeted setting. In particular, on ImageNet we improve the average query efficiency in the untargeted setting for various deep networks by a factor of at least 1.8 and up to 3 compared to the recent state-ofthe-art l∞-attack of Al-Dujaili & OReilly (2020). Moreover, although our attack is black-box, it can also outperform gradient-based white-box attacks on the standard benchmarks achieving a new state-of-the-art in terms of the success rate. The code of our attack is available at https://github.com/max-andr/square-attack.
translated by 谷歌翻译
我们为依次随机实验提出了一种新的扩散 - 反应分析,包括在解决多臂匪徒问题中出现的扩散分析。在使用$ n $时间步骤的实验中,我们让动作规模之间的平均奖励差距到$ 1/\ sqrt {n} $,以将学习任务的难度保留为$ n $的增长。在这个方案中,我们表明,一类顺序随机的马尔可夫实验的行为收敛到扩散极限,作为对随机微分方程的解决方案。因此,扩散极限使我们能够得出顺序实验的随机动力学的精致实例特异性表征。我们使用扩散极限来获得一些关于顺序实验的遗憾和信念演变的新见解,包括汤普森采样。一方面,我们表明,当奖励差距相对较大时,所有随机概率的顺序实验都具有lipchitz连续的依赖性。另一方面,我们发现,汤普森(Thompson)的样本具有渐近性的先验差异,达到了近乎特定实例的遗憾缩放,包括较大的奖励差距。但是,尽管使用非信息先验对汤普森采样产生了良好的遗憾,但我们表明,随着时间的流逝,诱发的后验信仰非常不稳定。
translated by 谷歌翻译
This paper studies the problem of stochastic continuum-armed bandit with constraints (SCBwC), where we optimize a black-box reward function $f(x)$ subject to a black-box constraint function $g(x)\leq 0$ over a continuous space $\mathcal X$. We model reward and constraint functions via Gaussian processes (GPs) and propose a Rectified Pessimistic-Optimistic Learning framework (RPOL), a penalty-based method incorporating optimistic and pessimistic GP bandit learning for reward and constraint functions, respectively. We consider the metric of cumulative constraint violation $\sum_{t=1}^T(g(x_t))^{+},$ which is strictly stronger than the traditional long-term constraint violation $\sum_{t=1}^Tg(x_t).$ The rectified design for the penalty update and the pessimistic learning for the constraint function in RPOL guarantee the cumulative constraint violation is minimal. RPOL can achieve sublinear regret and cumulative constraint violation for SCBwC and its variants (e.g., under delayed feedback and non-stationary environment). These theoretical results match their unconstrained counterparts. Our experiments justify RPOL outperforms several existing baseline algorithms.
translated by 谷歌翻译
Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select configurations, we focus on speeding up random search through adaptive resource allocation and early-stopping. We formulate hyperparameter optimization as a pure-exploration nonstochastic infinite-armed bandit problem where a predefined resource like iterations, data samples, or features is allocated to randomly sampled configurations. We introduce a novel algorithm, Hyperband, for this framework and analyze its theoretical properties, providing several desirable guarantees. Furthermore, we compare Hyperband with popular Bayesian optimization methods on a suite of hyperparameter optimization problems. We observe that Hyperband can provide over an order-of-magnitude speedup over our competitor set on a variety of deep-learning and kernel-based learning problems.
translated by 谷歌翻译
Neural networks provide state-of-the-art results for most machine learning tasks. Unfortunately, neural networks are vulnerable to adversarial examples: given an input x and any target classification t, it is possible to find a new input x that is similar to x but classified as t. This makes it difficult to apply neural networks in security-critical areas. Defensive distillation is a recently proposed approach that can take an arbitrary neural network, and increase its robustness, reducing the success rate of current attacks' ability to find adversarial examples from 95% to 0.5%.In this paper, we demonstrate that defensive distillation does not significantly increase the robustness of neural networks by introducing three new attack algorithms that are successful on both distilled and undistilled neural networks with 100% probability. Our attacks are tailored to three distance metrics used previously in the literature, and when compared to previous adversarial example generation algorithms, our attacks are often much more effective (and never worse). Furthermore, we propose using high-confidence adversarial examples in a simple transferability test we show can also be used to break defensive distillation. We hope our attacks will be used as a benchmark in future defense attempts to create neural networks that resist adversarial examples.
translated by 谷歌翻译
Adaptive attacks have (rightfully) become the de facto standard for evaluating defenses to adversarial examples. We find, however, that typical adaptive evaluations are incomplete. We demonstrate that thirteen defenses recently published at ICLR, ICML and NeurIPS-and which illustrate a diverse set of defense strategies-can be circumvented despite attempting to perform evaluations using adaptive attacks. While prior evaluation papers focused mainly on the end result-showing that a defense was ineffective-this paper focuses on laying out the methodology and the approach necessary to perform an adaptive attack. Some of our attack strategies are generalizable, but no single strategy would have been sufficient for all defenses. This underlines our key message that adaptive attacks cannot be automated and always require careful and appropriate tuning to a given defense. We hope that these analyses will serve as guidance on how to properly perform adaptive attacks against defenses to adversarial examples, and thus will allow the community to make further progress in building more robust models.
translated by 谷歌翻译
我们研究Stackelberg游戏,其中一位校长反复与长寿,非洋流代理商进行互动,而不知道代理商的回报功能。尽管当代理商是近视,非侧心代理会带来额外的并发症时,在Stackelberg游戏中的学习是充分理解的。尤其是,非洋流代理可以从战略上选择当前劣等的行动,以误导校长的学习算法并在未来获得更好的结果。我们提供了一个通用框架,该框架可在存在近视剂的情况下降低非洋白酶的学习来优化强大的匪徒。通过设计和分析微型反应性匪徒算法,我们的还原从校长学习算法的统计效率中进行了差异,以与其在诱导接近最佳的响应中的有效性。我们将此框架应用于Stackelberg Security Games(SSG),需求曲线,战略分类和一般有限的Stackelberg游戏的价格。在每种情况下,我们都表征了近最佳响应中存在的错误的类型和影响,并为此类拼写错误开发了一种鲁棒性的学习算法。在此过程中,我们通过最先进的$ O(n^3)$从SSGS中提高了SSG中的学习复杂性,从通过发现此类游戏的基本结构属性。该结果除了对非洋流药物学习之外,还具有独立的兴趣。
translated by 谷歌翻译
由于机器学习(ML)系统变得普遍存在,因此保护其安全性至关重要。然而,最近已经证明,动机的对手能够通过使用语义转换扰乱测试数据来误导ML系统。虽然存在丰富的研究机构,但为ML模型提供了可提供的稳健性保证,以防止$ \ ell_p $ norm界限对抗对抗扰动,抵御语义扰动的保证仍然很广泛。在本文中,我们提供了TSS - 一种统一的框架,用于针对一般对抗性语义转换的鲁棒性认证。首先,根据每个转换的性质,我们将常见的变换划分为两类,即可解决的(例如,高斯模糊)和差异可解的(例如,旋转)变换。对于前者,我们提出了特定于转型的随机平滑策略并获得强大的稳健性认证。后者类别涵盖涉及插值错误的变换,我们提出了一种基于分层采样的新方法,以证明稳健性。我们的框架TSS利用这些认证策略并结合了一致性增强的培训,以提供严谨的鲁棒性认证。我们对十种挑战性语义转化进行了广泛的实验,并表明TSS显着优于现有技术。此外,据我们所知,TSS是第一种在大规模想象数据集上实现非竞争认证稳健性的方法。例如,我们的框架在ImageNet上实现了旋转攻击的30.4%认证的稳健准确性(在$ \ PM 30 ^ \ CIC $)。此外,要考虑更广泛的转换,我们展示了TSS对自适应攻击和不可预见的图像损坏,例如CIFAR-10-C和Imagenet-C。
translated by 谷歌翻译
We consider a sequential decision making task where we are not allowed to evaluate parameters that violate an a priori unknown (safety) constraint. A common approach is to place a Gaussian process prior on the unknown constraint and allow evaluations only in regions that are safe with high probability. Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case. Moreover, the way in which they exploit regularity assumptions about the constraint introduces an additional critical hyperparameter. In this paper, we propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate. Our approach is naturally applicable to continuous domains and does not require additional hyperparameters. We theoretically analyze the method and show that we do not violate the safety constraint with high probability and that we explore by learning about the constraint up to arbitrary precision. Empirical evaluations demonstrate improved data-efficiency and scalability.
translated by 谷歌翻译
贝叶斯优化(BO)已成为黑框函数的顺序优化。当BO用于优化目标函数时,我们通常可以访问对潜在相关功能的先前评估。这就提出了一个问题,即我们是否可以通过元学习(meta-bo)来利用这些先前的经验来加速当前的BO任务,同时确保稳健性抵抗可能破坏BO融合的潜在有害的不同任务。本文介绍了两种可扩展且可证明的稳健元算法:稳健的元高斯过程 - 加工置信度结合(RM-GP-UCB)和RM-GP-thompson采样(RM-GP-TS)。我们证明,即使某些或所有以前的任务与当前的任务不同,这两种算法在渐近上都是无重组的,并且证明RM-GP-UCB比RM-GP-TS具有更好的理论鲁棒性。我们还利用理论保证,通过通过在线学习最大程度地减少遗憾,优化分配给各个任务的权重,从而减少了相似任务的影响,从而进一步增强了稳健性。经验评估表明,(a)RM-GP-UCB在各种应用程序中都有效,一致地性能,(b)RM-GP-TS,尽管在理论上和实践中都比RM-GP-ucb稳健,但在实践中,在竞争性中表现出色某些方案具有较小的任务,并且在计算上更有效。
translated by 谷歌翻译
富达匪徒问题是$ k $的武器问题的变体,其中每个臂的奖励通过提供额外收益的富达奖励来增强,这取决于播放器如何对该臂进行“忠诚”在过去。我们提出了两种忠诚的模型。在忠诚点模型中,额外奖励的数量取决于手臂之前播放的次数。在订阅模型中,额外的奖励取决于手臂的连续绘制的当前数量。我们考虑随机和对抗问题。由于单臂策略在随机问题中并不总是最佳,因此对抗性环境中遗憾的概念需要仔细调整。我们介绍了三个可能的遗憾和调查,这可以是偏执的偏执。我们详细介绍了增加,减少和优惠券的特殊情况(玩家在手臂的每辆M $播放后获得额外的奖励)保真奖励。对于不一定享受载体遗憾的模型,我们提供了最糟糕的下限。对于那些展示Sublinear遗憾的模型,我们提供算法并绑定他们的遗憾。
translated by 谷歌翻译
防御对抗例子仍然是一个空旷的问题。一个普遍的信念是,推理的随机性增加了寻找对抗性输入的成本。这种辩护的一个例子是将随机转换应用于输入之前,然后将其馈送到模型。在本文中,我们从经验和理论上研究了这种随机预处理的防御措施,并证明它们存在缺陷。首先,我们表明大多数随机防御措施比以前想象的要弱。他们缺乏足够的随机性来承受诸如投影梯度下降之类的标准攻击。这对长期以来的假设产生了怀疑,即随机防御能力无效,旨在逃避确定性的防御和迫使攻击者以整合对转型(EOT)概念的期望。其次,我们表明随机防御与对抗性鲁棒性和模型不变性之间的权衡面临。随着辩护模型获得更多的随机化不变性,它们变得不太有效。未来的工作将需要使这两种效果分解。我们的代码在补充材料中可用。
translated by 谷歌翻译
在预测功能(假设)中获得可靠的自适应置信度集是顺序决策任务的核心挑战,例如土匪和基于模型的强化学习。这些置信度集合通常依赖于对假设空间的先前假设,例如,繁殖核Hilbert Space(RKHS)的已知核。手动设计此类内核是容易发生的,错误指定可能导致性能差或不安全。在这项工作中,我们建议从离线数据(meta-kel)中进行元学习核。对于未知核是已知碱基核的组合的情况,我们基于结构化的稀疏性开发估计量。在温和的条件下,我们保证我们的估计RKHS会产生有效的置信度集,随着越来越多的离线数据的量,它变得与鉴于真正未知内核的置信度一样紧。我们展示了我们关于内核化强盗问题(又称贝叶斯优化)的方法,我们在其中建立了遗憾的界限,与鉴于真正的内核的人竞争。我们还经验评估方法对贝叶斯优化任务的有效性。
translated by 谷歌翻译
高赌注应用中产生的许多黑匣子优化任务需要风险厌恶的决策。但标准贝叶斯优化(BO)范式仅优化了预期值。我们概括了博的商业卑鄙和输入依赖性方差,我们认为我们认为是未知的先验。特别是,我们提出了一种新的风险厌恶异源贝类贝叶斯优化算法(Rahbo),其旨在识别具有高回报和低噪声方差的解决方案,同时在飞行时学习噪声分布。为此,我们将期望和方差模拟(未知)RKHS函数,并提出了一种新的风险感知获取功能。我们对我们的方法绑定了遗憾,并提供了一个强大的规则,以报告必须识别单个解决方案的应用程序的最终决策点。我们展示了Rahbo对合成基准函数和超参数调整任务的有效性。
translated by 谷歌翻译
我们探索了一个新的强盗实验模型,其中潜在的非组织序列会影响武器的性能。上下文 - 统一算法可能会混淆,而那些执行正确的推理面部信息延迟的算法。我们的主要见解是,我们称之为Deconfounst Thompson采样的算法在适应性和健壮性之间取得了微妙的平衡。它的适应性在易于固定实例中带来了最佳效率,但是在硬性非平稳性方面显示出令人惊讶的弹性,这会导致其他自适应算法失败。
translated by 谷歌翻译
贝叶斯神经网络试图将神经网络的强大预测性能与与贝叶斯架构预测产出相关的不确定性的正式量化相结合。然而,它仍然不清楚如何在升入网络的输出空间时,如何赋予网络的参数。提出了一种可能的解决方案,使用户能够为手头的任务提供适当的高斯过程协方差函数。我们的方法构造了网络参数的先前分配,称为ridgelet,它近似于网络的输出空间中的Posited高斯过程。与神经网络和高斯过程之间的连接的现有工作相比,我们的分析是非渐近的,提供有限的样本大小的错误界限。这建立了贝叶斯神经网络可以近似任何高斯过程,其协方差函数是足够规律的任何高斯过程。我们的实验评估仅限于概念验证,在那里我们证明ridgele先前可以在可以提供合适的高斯过程的回归问题之前出现非结构化。
translated by 谷歌翻译