许多操作数值天气预报系统中使用的数据同化程序基于4D-VAR算法的变体。解决4D-VAR问题的成本是由物理模型的前进和伴随评估的成本为主。这通过快速,近似代理模型来激励他们的替代。神经网络为代理模型的数据驱动创建提供了一个有希望的方法。已显示代理4D-VAR问题解决方案的准确性,明确地依赖于对其他代理建模方法和一般非线性设置的准确建模和伴随的准确建模。我们制定和分析若干方法,将衍生信息纳入神经网络替代品的构建。通过训练集数据和Lorenz-63系统上的顺序数据同化设置来测试生成的网络。与没有伴随信息的替代网络培训的代理网络相比,两种方法表现出卓越的性能,显示将伴随信息纳入训练过程的益处。
translated by 谷歌翻译
混沌系统中仿真预测的准确性严重依赖于预测初始化时系统状态的高质量估计。数据同化方法用于通过系统地结合噪音,不完整的观察和系统动态的数值模型来推断这些初始条件,以产生有效的估计方案。我们介绍了摊销同化,这是一种学习的框架,用于从嘈杂的观察序列中吸收动态系统,无需基础真理数据。我们通过使用可分辨率模拟来激励来自自我监控的自我监督剥夺到动态系统设置的强大结果来激励框架。跨几台基准系统的实验结果突出了我们对广泛使用的数据同化方法的提高效果。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
大规模复杂动力系统的实时精确解决方案非常需要控制,优化,不确定性量化以及实践工程和科学应用中的决策。本文朝着这个方向做出了贡献,模型限制了切线流形学习(MCTANGENT)方法。 McTangent的核心是几种理想策略的协同作用:i)切线的学术学习,以利用神经网络速度和线条方法的准确性; ii)一种模型限制的方法,将神经网络切线与基础管理方程式进行编码; iii)促进长时间稳定性和准确性的顺序学习策略;和iv)数据随机方法,以隐式强制执行神经网络切线的平滑度及其对真相切线的可能性,以进一步提高麦克氏解决方案的稳定性和准确性。提供了半启发式和严格的论点,以分析和证明拟议的方法是合理的。提供了几个用于传输方程,粘性汉堡方程和Navier Stokes方程的数值结果,以研究和证明所提出的MCTANGENT学习方法的能力。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
随机微分方程(SDE)用于描述各种复杂的随机动力学系统。学习SDE中的隐藏物理学对于揭示对这些系统的随机和非线性行为的基本理解至关重要。我们提出了一个灵活且可扩展的框架,用于训练人工神经网络,以学习代表SDE中隐藏物理的本构方程。所提出的随机物理学的神经普通微分方程框架(Spinode)通过已知的SDE结构(即已知的物理学)传播随机性,以产生一组确定性的ODE,以描述随机状态的统计矩的时间演变。然后,Spinode使用ODE求解器预测矩轨迹。 Spinode通过将预测的矩与从数据估计的矩匹配来学习隐藏物理的神经网络表示。利用了自动分化和微型批次梯度下降的最新进展,并利用了伴随灵敏度,以建立神经网络的未知参数。我们在三个基准内案例研究上展示了Spinod,并分析了框架的数值鲁棒性和稳定性。 Spinode提供了一个有希望的新方向,用于系统地阐明具有乘法噪声的多元随机动力学系统的隐藏物理。
translated by 谷歌翻译
在概述中,引入了通用数学对象(映射),并解释了其与模型物理参数化的关系。引入了可用于模拟和/或近似映射的机器学习(ML)工具。ML的应用在模拟现有参数化,开发新的参数化,确保物理约束和控制开发应用程序的准确性。讨论了一些允许开发人员超越标准参数化范式的ML方法。
translated by 谷歌翻译
基于时间序列观测数据,数据同化技术广泛用于预测具有不确定性的复杂动态系统。错误协方差矩阵建模是数据同化算法中的重要元素,其可以大大影响预测精度。这些协方差通常依赖于经验假设和物理限制的估计通常是不精确的,并且计算昂贵的昂贵,特别是对于大维度的系统。在这项工作中,我们提出了一种基于长短短期存储器(LSTM)经常性神经网络(RNN)的数据驱动方法,以提高观察协方差规范的准确性和效率的动态系统中的数据同化。与观察/模拟时间序列数据学习协方差矩阵,不同的方法不需要任何关于先前错误分布的知识或假设,而不是经典的后调整方法。我们将新的方法与两个最先进的协方差调谐算法进行了比较,即DI01和D05,首先在Lorenz动态系统中,然后在2D浅水双实验框架中,使用集合同化使用不同的协方差参数化。这种新方法在观察协方差规范,同化精度和计算效率方面具有显着的优势。
translated by 谷歌翻译
数据科学和机器学习的进展已在非线性动力学系统的建模和模拟方面取得了重大改进。如今,可以准确预测复杂系统,例如天气,疾病模型或股市。预测方法通常被宣传为对控制有用,但是由于系统的复杂性,较大的数据集的需求以及增加的建模工作,这些细节经常没有得到解答。换句话说,自治系统的替代建模比控制系统要容易得多。在本文中,我们介绍了Quasimodo框架(量化模拟模拟模拟 - 优化),以将任意预测模型转换为控制系统,从而使数据驱动的替代模型的巨大进步可访问控制系统。我们的主要贡献是,我们通过自动化动力学(产生混合企业控制问题)来贸易控制效率,以获取任意,即使用的自主替代建模技术。然后,我们通过利用混合成员优化的最新结果来恢复原始问题的复杂性。 Quasimodo的优点是数据要求在控制维度方面的线性增加,性能保证仅依赖于使用的预测模型的准确性,而控制理论中的知识知识要求很少来解决复杂的控制问题。
translated by 谷歌翻译
生产精确的天气预报和不确定的不确定性的可靠量化是一个开放的科学挑战。到目前为止,集团预测是最成功的方法,以产生相关预测的方法以及估计其不确定性。集合预测的主要局限性是高计算成本,难以捕获和量化不同的不确定性来源,特别是与模型误差相关的源。在这项工作中,进行概念证据模型实验,以检查培训的ANN的性能,以预测系统的校正状态和使用单个确定性预测作为输入的状态不确定性。我们比较不同的培训策略:一个基于使用集合预测的平均值和传播作为目标的直接培训,另一个依赖于使用确定性预测作为目标的决定性预测,其中来自数据隐含地学习不确定性。对于最后一种方法,提出和评估了两个替代损失函数,基于数据观察似然和基于误差的本地估计来评估另一个丢失功能。在不同的交货时间和方案中检查网络的性能,在没有模型错误的情况下。使用Lorenz'96模型的实验表明,ANNS能够模拟集合预测的一些属性,如最不可预测模式的过滤和预测不确定性的状态相关量化。此外,ANNS提供了在模型误差存在下的预测不确定性的可靠估计。
translated by 谷歌翻译
Data-driven modeling has become a key building block in computational science and engineering. However, data that are available in science and engineering are typically scarce, often polluted with noise and affected by measurement errors and other perturbations, which makes learning the dynamics of systems challenging. In this work, we propose to combine data-driven modeling via operator inference with the dynamic training via roll outs of neural ordinary differential equations. Operator inference with roll outs inherits interpretability, scalability, and structure preservation of traditional operator inference while leveraging the dynamic training via roll outs over multiple time steps to increase stability and robustness for learning from low-quality and noisy data. Numerical experiments with data describing shallow water waves and surface quasi-geostrophic dynamics demonstrate that operator inference with roll outs provides predictive models from training trajectories even if data are sampled sparsely in time and polluted with noise of up to 10%.
translated by 谷歌翻译
在科学的背景下,众所周知的格言“一张图片胜过千言万语”可能是“一个型号胜过一千个数据集”。在本手稿中,我们将Sciml软件生态系统介绍作为混合物理法律和科学模型的信息,并使用数据驱动的机器学习方法。我们描述了一个数学对象,我们表示通用微分方程(UDE),作为连接生态系统的统一框架。我们展示了各种各样的应用程序,从自动发现解决高维汉密尔顿 - Jacobi-Bellman方程的生物机制,可以通过UDE形式主义和工具进行措辞和有效地处理。我们展示了软件工具的一般性,以处理随机性,延迟和隐式约束。这使得各种SCIML应用程序变为核心训练机构的核心集,这些训练机构高度优化,稳定硬化方程,并与分布式并行性和GPU加速器兼容。
translated by 谷歌翻译
深度学习方法的应用加快了挑战性电流问题的分辨率,最近显示出令人鼓舞的结果。但是,电力系统动力学不是快照,稳态操作。必须考虑这些动力学,以确保这些模型提供的最佳解决方案遵守实用的动力约束,避免频率波动和网格不稳定性。不幸的是,由于其高计算成本,基于普通或部分微分方程的动态系统模型通常不适合在控制或状态估计中直接应用。为了应对这些挑战,本文介绍了一种机器学习方法,以近乎实时近似电力系统动态的行为。该拟议的框架基于梯度增强的物理知识的神经网络(GPINNS),并编码有关电源系统的基本物理定律。拟议的GPINN的关键特征是它的训练能力而无需生成昂贵的培训数据。该论文说明了在单机无限总线系统中提出的方法在预测转子角度和频率的前进和反向问题中的潜力,以及不确定的参数,例如惯性和阻尼,以展示其在一系列电力系统应用中的潜力。
translated by 谷歌翻译
在广泛的应用程序中,从观察到的数据中识别隐藏的动态是一项重大且具有挑战性的任务。最近,线性多步法方法(LMM)和深度学习的结合已成功地用于发现动力学,而对这种方法进行完整的收敛分析仍在开发中。在这项工作中,我们考虑了基于网络的深度LMM,以发现动态。我们使用深网的近似属性提出了这些方法的错误估计。它指出,对于某些LMMS的家庭,$ \ ell^2 $网格错误由$ O(H^p)$的总和和网络近似错误,其中$ h $是时间步长和$P $是本地截断错误顺序。提供了几个物理相关示例的数值结果,以证明我们的理论。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
Bayesian optimization provides sample-efficient global optimization for a broad range of applications, including automatic machine learning, engineering, physics, and experimental design. We introduce BOTORCH, a modern programming framework for Bayesian optimization that combines Monte-Carlo (MC) acquisition functions, a novel sample average approximation optimization approach, autodifferentiation, and variance reduction techniques. BOTORCH's modular design facilitates flexible specification and optimization of probabilistic models written in PyTorch, simplifying implementation of new acquisition functions. Our approach is backed by novel theoretical convergence results and made practical by a distinctive algorithmic foundation that leverages fast predictive distributions, hardware acceleration, and deterministic optimization. We also propose a novel "one-shot" formulation of the Knowledge Gradient, enabled by a combination of our theoretical and software contributions. In experiments, we demonstrate the improved sample efficiency of BOTORCH relative to other popular libraries.34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
The saddle point (SP) calculation is a grand challenge for computationally intensive energy function in computational chemistry area, where the saddle point may represent the transition state (TS). The traditional methods need to evaluate the gradients of the energy function at a very large number of locations. To reduce the number of expensive computations of the true gradients, we propose an active learning framework consisting of a statistical surrogate model, Gaussian process regression (GPR) for the energy function, and a single-walker dynamics method, gentle accent dynamics (GAD), for the saddle-type transition states. SP is detected by the GAD applied to the GPR surrogate for the gradient vector and the Hessian matrix. Our key ingredient for efficiency improvements is an active learning method which sequentially designs the most informative locations and takes evaluations of the original model at these locations to train GPR. We formulate this active learning task as the optimal experimental design problem and propose a very efficient sample-based sub-optimal criterion to construct the optimal locations. We show that the new method significantly decreases the required number of energy or force evaluations of the original model.
translated by 谷歌翻译