The saddle point (SP) calculation is a grand challenge for computationally intensive energy function in computational chemistry area, where the saddle point may represent the transition state (TS). The traditional methods need to evaluate the gradients of the energy function at a very large number of locations. To reduce the number of expensive computations of the true gradients, we propose an active learning framework consisting of a statistical surrogate model, Gaussian process regression (GPR) for the energy function, and a single-walker dynamics method, gentle accent dynamics (GAD), for the saddle-type transition states. SP is detected by the GAD applied to the GPR surrogate for the gradient vector and the Hessian matrix. Our key ingredient for efficiency improvements is an active learning method which sequentially designs the most informative locations and takes evaluations of the original model at these locations to train GPR. We formulate this active learning task as the optimal experimental design problem and propose a very efficient sample-based sub-optimal criterion to construct the optimal locations. We show that the new method significantly decreases the required number of energy or force evaluations of the original model.
translated by 谷歌翻译
Partial differential equations (PDEs) are widely used for description of physical and engineering phenomena. Some key parameters involved in PDEs, which represents certain physical properties with important scientific interpretations, are difficult or even impossible to be measured directly. Estimation of these parameters from noisy and sparse experimental data of related physical quantities is an important task. Many methods for PDE parameter inference involve a large number of evaluations of numerical solution of PDE through algorithms such as finite element method, which can be time-consuming especially for nonlinear PDEs. In this paper, we propose a novel method for estimating unknown parameters in PDEs, called PDE-Informed Gaussian Process Inference (PIGPI). Through modeling the PDE solution as a Gaussian process (GP), we derive the manifold constraints induced by the (linear) PDE structure such that under the constraints, the GP satisfies the PDE. For nonlinear PDEs, we propose an augmentation method that transfers the nonlinear PDE into an equivalent PDE system linear in all derivatives that our PIGPI can handle. PIGPI can be applied to multi-dimensional PDE systems and PDE systems with unobserved components. The method completely bypasses the numerical solver for PDE, thus achieving drastic savings in computation time, especially for nonlinear PDEs. Moreover, the PIGPI method can give the uncertainty quantification for both the unknown parameters and the PDE solution. The proposed method is demonstrated by several application examples from different areas.
translated by 谷歌翻译
由于其数据效率,贝叶斯优化已经出现在昂贵的黑盒优化的最前沿。近年来,关于新贝叶斯优化算法及其应用的发展的研究激增。因此,本文试图对贝叶斯优化的最新进展进行全面和更新的调查,并确定有趣的开放问题。我们将贝叶斯优化的现有工作分为九个主要群体,并根据所提出的算法的动机和重点。对于每个类别,我们介绍了替代模型的构建和采集功能的适应的主要进步。最后,我们讨论了开放的问题,并提出了有希望的未来研究方向,尤其是在分布式和联合优化系统中的异质性,隐私保护和公平性方面。
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
贝叶斯优化(BO)被广泛用于优化随机黑匣子功能。尽管大多数BO方法都集中在优化条件期望上,但许多应用程序都需要规避风险的策略,并且需要考虑分配尾巴的替代标准。在本文中,我们提出了针对贝叶斯分位数和预期回归的新变异模型,这些模型非常适合异形的噪声设置。我们的模型分别由有条件分位数(或期望)的两个潜在高斯过程和不对称可能性函数的比例参数组成。此外,我们提出了基于最大值熵搜索和汤普森采样的两种BO策略,这些策略是针对此类型号量身定制的,可以容纳大量点。与现有的BO进行规避风险优化的方法相反,我们的策略可以直接针对分位数和预期进行优化,而无需复制观测值或假设噪声的参数形式。如实验部分所示,所提出的方法清楚地表现出异质的非高斯案例中的最新状态。
translated by 谷歌翻译
Bayesian Optimization is a useful tool for experiment design. Unfortunately, the classical, sequential setting of Bayesian Optimization does not translate well into laboratory experiments, for instance battery design, where measurements may come from different sources and their evaluations may require significant waiting times. Multi-fidelity Bayesian Optimization addresses the setting with measurements from different sources. Asynchronous batch Bayesian Optimization provides a framework to select new experiments before the results of the prior experiments are revealed. This paper proposes an algorithm combining multi-fidelity and asynchronous batch methods. We empirically study the algorithm behavior, and show it can outperform single-fidelity batch methods and multi-fidelity sequential methods. As an application, we consider designing electrode materials for optimal performance in pouch cells using experiments with coin cells to approximate battery performance.
translated by 谷歌翻译
使用复杂的数学方法建模的工程问题或者以昂贵的测试或实验为特征,占用有限预算或有限计算资源。此外,行业的实际情景,基于物流和偏好,对可以进行实验的方式施加限制。例如,材料供应可以仅在单次或计算模型的情况下仅实现少量实验,因此可以基于共享计算资源面临显着的等待时间。在这种情况下,一个人通常以允许最大化一个人的知识的方式进行实验,同时满足上述实际限制。实验顺序设计(Sdoe)是一种流行的方法套件,近年来越来越多的不同工程和实际问题。利用贝叶斯形式主义的普通战略是贝叶斯Sdoe,它通常在一步一步的一步中选择单一实验的一步或近视场景中最好的工作。在这项工作中,我们的目标是扩展SDOE策略,以批量输入查询实验或计算机代码。为此,我们利用基于深度加强学习(RL)的政策梯度方法,提出批次选择的查询,以考虑到整个预算。该算法保留了SDOE中固有的顺序性质,同时基于来自深rl域的任务的奖励元素。所提出的方法的独特能力是其应用于多个任务的能力,例如函数的优化,一旦其培训。我们展示了在合成问题上提出了算法的性能,以及挑战的高维工程问题。
translated by 谷歌翻译
制造中的一个自主实验平台据说能够进行顺序搜索,以便自行为先进材料寻找合适的制造条件,甚至用于发现具有最小的人为干预的新材料。这种平台的智能控制的核心是政策指导顺序实验,即根据到目前为止所做的事情来决定在下次进行下一个实验的地方。此类政策不可避免地违反勘探,而目前的做法是利用预期改进标准或其变体的贝叶斯优化框架。我们讨论是否利用与直接观察相关的元素和惊喜程度来促进剥削与勘探有益。我们使用两个现有的惊喜指标设计了一个惊喜的反应政策,称为香农惊喜和贝叶斯惊喜。我们的分析表明,令人惊讶的反应政策似乎更适合于在资源限制下快速表征响应面或设计地点的整体景观。我们认为未来派自治实验平台需要这种能力。我们没有声称我们有一个完全自主的实验平台,但相信我们目前的努力揭示了新灯或提供了不同的视角,因为研究人员正在赛车提升各种原始自治实验系统的自主权。
translated by 谷歌翻译
在这项工作中,我们提出了一个新的高斯进程回归(GPR)方法:物理信息辅助Kriging(PHIK)。在标准数据驱动的Kriging中,感兴趣的未知功能通常被视为高斯过程,其中具有假定的静止协方差,其具有从数据估计的QuandEdmente。在PHIK中,我们从可用随机模型的实现中计算平均值和协方差函数,例如,从管理随机部分微分方程解决方案的实现。这种构造的高斯过程通常是非静止的,并且不承担特定形式的协方差。我们的方法避免了数据驱动的GPR方法中的优化步骤来识别超参数。更重要的是,我们证明了确定性线性操作员形式的物理约束在得到的预测中保证。当在随机模型实现中包含错误时,我们还提供了保留物理约束时的误差估计。为了降低获取随机模型的计算成本,我们提出了一种多级蒙特卡罗估计的平均和协方差函数。此外,我们介绍了一种有源学习算法,指导选择附加观察位置。 PHIK的效率和准确性被证明重建部分已知的修饰的Branin功能,研究三维传热问题,并从稀疏浓度测量学习保守的示踪剂分布。
translated by 谷歌翻译
我们制定自然梯度变推理(VI),期望传播(EP),和后线性化(PL)作为牛顿法用于优化贝叶斯后验分布的参数扩展。这种观点明确地把数值优化框架下的推理算法。我们表明,通用近似牛顿法从优化文献,即高斯 - 牛顿和准牛顿方法(例如,该BFGS算法),仍然是这种“贝叶斯牛顿”框架下有效。这导致了一套这些都保证以产生半正定协方差矩阵,不像标准VI和EP新颖算法。我们统一的观点提供了新的见解各种推理方案之间的连接。所有提出的方法适用于具有高斯事先和非共轭的可能性,这是我们与(疏)高斯过程和状态空间模型展示任何模型。
translated by 谷歌翻译
社会和自然中的极端事件,例如大流行尖峰,流氓波浪或结构性失败,可能会带来灾难性的后果。极端的表征很困难,因为它们很少出现,这似乎是由良性的条件引起的,并且属于复杂且通常是未知的无限维系统。这种挑战使他们将其描述为“毫无意义”。我们通过将贝叶斯实验设计(BED)中的新型训练方案与深神经操作员(DNOS)合奏结合在一起来解决这些困难。这个模型不足的框架配对了一个床方案,该床方案积极选择数据以用近似于无限二二维非线性运算符的DNO集合来量化极端事件。我们发现,这个框架不仅清楚地击败了高斯流程(GPS),而且只有两个成员的浅色合奏表现最好; 2)无论初始数据的状态如何(即有或没有极端),都会发现极端; 3)我们的方法消除了“双研究”现象; 4)与逐步全球Optima相比,使用次优的采集点的使用不会阻碍床的性能; 5)蒙特卡洛的获取优于高量级的标准优化器。这些结论共同构成了AI辅助实验基础设施的基础,该基础设施可以有效地推断并查明从物理到社会系统的许多领域的关键情况。
translated by 谷歌翻译
我们考虑使用昂贵的功能评估(也称为实验)的黑匣子多目标优化(MOO)的问题,其中目标是通过最小化实验的总资源成本来近似真正的帕累托解决方案。例如,在硬件设计优化中,我们需要使用昂贵的计算模拟找到权衡性能,能量和面积开销的设计。关键挑战是选择使用最小资源揭示高质量解决方案的实验顺序。在本文中,我们提出了一种基于输出空间熵(OSE)搜索原理来解决MOO问题的一般框架:选择最大化每单位资源成本的信息的实验,这是真正的帕累托前线所获得的信息。我们适当地实例化了OSE搜索的原理,以导出以下四个Moo问题设置的高效算法:1)最基本的EM单一保真设置,实验昂贵且准确; 2)处理EM黑匣子约束}在不执行实验的情况下无法进行评估; 3)离散的多保真设置,实验可以在消耗的资源量和评估准确度时变化; 4)EM连续保真设置,其中连续函数近似导致巨大的实验空间。不同综合和现实世界基准测试的实验表明,基于OSE搜索的算法在既有计算效率和MOO解决方案的准确性方面改进了最先进的方法。
translated by 谷歌翻译
这项正在进行的工作旨在为统计学习提供统一的介绍,从诸如GMM和HMM等经典模型到现代神经网络(如VAE和扩散模型)缓慢地构建。如今,有许多互联网资源可以孤立地解释这一点或新的机器学习算法,但是它们并没有(也不能在如此简短的空间中)将这些算法彼此连接起来,或者与统计模型的经典文献相连现代算法出现了。同样明显缺乏的是一个单一的符号系统,尽管对那些已经熟悉材料的人(如这些帖子的作者)不满意,但对新手的入境造成了重大障碍。同样,我的目的是将各种模型(尽可能)吸收到一个用于推理和学习的框架上,表明(以及为什么)如何以最小的变化将一个模型更改为另一个模型(其中一些是新颖的,另一些是文献中的)。某些背景当然是必要的。我以为读者熟悉基本的多变量计算,概率和统计以及线性代数。这本书的目标当然不是​​完整性,而是从基本知识到过去十年中极强大的新模型的直线路径或多或少。然后,目标是补充而不是替换,诸如Bishop的\ emph {模式识别和机器学习}之类的综合文本,该文本现在已经15岁了。
translated by 谷歌翻译
强化学习(RL)旨在通过与环境的互动来找到最佳政策。因此,学习复杂行为需要大量的样本,这在实践中可能是持久的。然而,而不是系统地推理和积极选择信息样本,用于本地搜索的政策梯度通常从随机扰动获得。这些随机样品产生高方差估计,因此在样本复杂性方面是次优。积极选择内容性样本是贝叶斯优化的核心,它构成了过去样本的目标的概率替代物,以推理信息的后来的随后。在本文中,我们建议加入两个世界。我们利用目标函数的概率模型及其梯度开发算法。基于该模型,该算法决定查询嘈杂的零顺序oracle以提高梯度估计。生成的算法是一种新型策略搜索方法,我们与现有的黑盒算法进行比较。比较揭示了改进的样本复杂性和对合成目标的广泛实证评估的差异降低。此外,我们突出了主动抽样对流行的RL基准测试的好处。
translated by 谷歌翻译
各种科学和工程领域使用参数化机制模型。工程师和科学家通常可以假设几个竞争模型来解释特定的过程或现象。考虑一个模特歧视设置,我们希望找到最佳机械,动态模型候选者和最佳模型参数估计。通常,若干竞争机械模型可以解释可用数据,因此通过找到最大化模型预测发散的实验设置,可以通过找到最大化模型预测发散的实验设置来实现最佳地收集额外数据的动态实验。我们争论文献中有两种主要方法,用于解决最佳设计问题:(i)分析方法,使用线性和高斯近似来找设计目标的闭合表达式,以及(ii)数据驱动方法,这通常依赖于计算密集的蒙特卡罗技术。 olofsson等人。 (ICML 35,2018)介绍了高斯工艺(GP)替代模型来杂交的分析和数据驱动方法,这允许计算的实验设计,以识别黑盒式模型。在这项研究中,我们证明我们可以扩展现有的动态实验设计方法,以纳入更广泛的问题不确定性。我们还延伸了Olofsson等人。 (2018)使用GP代理模型来辨别动态黑盒式模型的方法。我们在文献中的着名案例研究中评估了我们的方法,并探讨了使用GP代理到近似基于梯度的方法的后果。
translated by 谷歌翻译
我们开发了一个计算程序,以估计具有附加噪声的半摩托车高斯过程回归模型的协方差超参数。也就是说,提出的方法可用于有效估计相关误差的方差,以及基于最大化边际似然函数的噪声方差。我们的方法涉及适当地降低超参数空间的维度,以简化单变量的根发现问题的估计过程。此外,我们得出了边际似然函数及其衍生物的边界和渐近线,这对于缩小高参数搜索的初始范围很有用。使用数值示例,我们证明了与传统参数优化相比,提出方法的计算优势和鲁棒性。
translated by 谷歌翻译
我们介绍了一个名为统计信息的神经网络(SINN)的机器学习框架,用于从数据中学习随机动力学。从理论上讲,这种新的架构是受到随机系统的通用近似定理的启发,我们在本文中介绍了它,以及用于随机建模的投影手术形式。我们设计了训练神经网络模型的机制,以重现目标随机过程的正确\ emph {统计}行为。数值模拟结果表明,受过良好训练的SINN可以可靠地近似马尔可夫和非马克维亚随机动力学。我们证明了SINN对粗粒问题和过渡动力学的建模的适用性。此外,我们表明可以在时间粗粒的数据上训练所获得的减少阶模型,因此非常适合稀有事实模拟。
translated by 谷歌翻译
许多昂贵的黑匣子优化问题对其输入敏感。在这些问题中,定位一个良好的设计区域更有意义,而不是一个可能的脆弱的最佳设计。昂贵的黑盒功能可以有效地优化贝叶斯优化,在那里高斯过程是在昂贵的功能之前的流行选择。我们提出了一种利用贝叶斯优化的强大优化方法,找到一种设计空间区域,其中昂贵的功能的性能对输入相对不敏感,同时保持质量好。这是通过从正在建模昂贵的功能的高斯进程的实现来实现这一点,并评估每个实现的改进。这些改进的期望可以用进化算法廉价地优化,以确定评估昂贵功能的下一个位置。我们描述了一个有效的过程来定位最佳预期改进。我们凭经验展示了评估候选不确定区域的昂贵功能的昂贵功能,该模型最不确定,或随机地产生最佳收敛与利用方案相比。我们在两个,五个和十个维度中说明了我们的六个测试功能的方法,并证明它能够优于来自文献的两种最先进的方法。我们还展示了我们的方法在4和8维中展示了两个真实问题,这涉及训练机器人臂,将物体推到目标上。
translated by 谷歌翻译
我们考虑了使用显微镜或X射线散射技术产生的图像数据自组装的模型的贝叶斯校准。为了说明BCP平衡结构中的随机远程疾病,我们引入了辅助变量以表示这种不确定性。然而,这些变量导致了高维图像数据的综合可能性,通常可以评估。我们使用基于测量运输的可能性方法以及图像数据的摘要统计数据来解决这一具有挑战性的贝叶斯推理问题。我们还表明,可以计算出有关模型参数的数据中的预期信息收益(EIG),而无需额外的成本。最后,我们介绍了基于二嵌段共聚物薄膜自组装和自上而下显微镜表征的ohta-kawasaki模型的数值案例研究。为了进行校准,我们介绍了一些基于域的能量和傅立叶的摘要统计数据,并使用EIG量化了它们的信息性。我们证明了拟议方法研究数据损坏和实验设计对校准结果的影响的力量。
translated by 谷歌翻译
本文为工程产品的计算模型或仅返回分类信息的过程提供了一种新的高效和健壮方法,用于罕见事件概率估计,例如成功或失败。对于此类模型,大多数用于估计故障概率的方法,这些方法使用结果的数值来计算梯度或估计与故障表面的接近度。即使性能函数不仅提供了二进制输出,系统的状态也可能是连续输入变量域中定义的不平滑函数,甚至是不连续的函数。在这些情况下,基于经典的梯度方法通常会失败。我们提出了一种简单而有效的算法,该算法可以从随机变量的输入域进行顺序自适应选择点,以扩展和完善简单的基于距离的替代模型。可以在连续采样的任何阶段完成两个不同的任务:(i)估计失败概率,以及(ii)如果需要进一步改进,则选择最佳的候选者进行后续模型评估。选择用于模型评估的下一个点的建议标准最大化了使用候选者分类的预期概率。因此,全球探索与本地剥削之间的完美平衡是自动维持的。该方法可以估计多种故障类型的概率。此外,当可以使用模型评估的数值来构建平滑的替代物时,该算法可以容纳此信息以提高估计概率的准确性。最后,我们定义了一种新的简单但一般的几何测量,这些测量是对稀有事实概率对单个变量的全局敏感性的定义,该度量是作为所提出算法的副产品获得的。
translated by 谷歌翻译