单光子雪崩二极管(SPAD)在深度传感任务中越来越受欢迎。然而,由于堆积的效果,在高环境光线存在下仍然在努力挣扎。常规技术利用固定或异步门控以最小化堆积效果,但这些门控计划是所有非自适应的,因为它们无法将诸如场景前导者和之前的光子检测等因素结合到其门控策略中。我们提出了一种基于汤普森采样的自适应门控计划。自适应门控基于先前的光子观察周期性地更新栅极位置,以便最小化深度误差。我们的实验表明,即使在强大的阳光条件下在户外操作,我们的门控策略也会显着降低深度重建误差和采集时间。
translated by 谷歌翻译
3D Flash LiDAR是传统扫描激光雷达系统的替代方法,有望在紧凑的外形尺寸中进行精确的深度成像,并且没有运动部件,例如自动驾驶汽车,机器人技术和增强现实(AR)等应用。通常在图像传感器格式中使用单光子,直接飞行时间(DTOF)接收器实施,设备的操作可能会受到需要在室外场景中处理和压缩的大量光子事件的阻碍以及对较大数组的可扩展性。我们在这里提出了一个64x32像素(256x128 spad)DTOF成像器,该成像器通过将像素与嵌入式直方图使用像素一起克服这些局限性,该直方直方图锁定并跟踪返回信号。这大大降低了输出数据帧的大小,可在10 kfps范围内或100 kfps的最大帧速率进行直接深度读数。该传感器可选择性地读数检测表面或传感运动的像素,从而减少功耗和片外处理要求。我们演示了传感器在中端激光雷达中的应用。
translated by 谷歌翻译
Time-resolved image sensors that capture light at pico-to-nanosecond timescales were once limited to niche applications but are now rapidly becoming mainstream in consumer devices. We propose low-cost and low-power imaging modalities that capture scene information from minimal time-resolved image sensors with as few as one pixel. The key idea is to flood illuminate large scene patches (or the entire scene) with a pulsed light source and measure the time-resolved reflected light by integrating over the entire illuminated area. The one-dimensional measured temporal waveform, called \emph{transient}, encodes both distances and albedoes at all visible scene points and as such is an aggregate proxy for the scene's 3D geometry. We explore the viability and limitations of the transient waveforms by themselves for recovering scene information, and also when combined with traditional RGB cameras. We show that plane estimation can be performed from a single transient and that using only a few more it is possible to recover a depth map of the whole scene. We also show two proof-of-concept hardware prototypes that demonstrate the feasibility of our approach for compact, mobile, and budget-limited applications.
translated by 谷歌翻译
在部署非视线(NLOS)成像系统中,越来越兴趣,以恢复障碍物背后的物体。现有解决方案通常在扫描隐藏对象之前预先校准系统。在封堵器,对象和扫描模式的现场调整需要重新校准。我们提出了一种在线校准技术,直接将所获取的瞬态扫描到LOS和隐藏组件中的所获取的瞬态耦合。我们使用前者直接(RE)在场景/障碍配置,扫描区域和扫描模式的变化时校准系统,而后者通过空间,频率或基于学习的技术恢复后者。我们的技术避免使用辅助校准设备,例如镜子或棋盘,并支持实验室验证和现实世界部署。
translated by 谷歌翻译
间接飞行时间(ITOF)相机是一个有希望的深度传感技术。然而,它们容易出现由多路径干扰(MPI)和低信噪比(SNR)引起的错误。传统方法,在去噪后,通过估计编码深度的瞬态图像来减轻MPI。最近,在不使用中间瞬态表示的情况下,共同去噪和减轻MPI的数据驱动方法已经成为最先进的。在本文中,我们建议重新审视瞬态代表。使用数据驱动的Priors,我们将其插入/推断ITOF频率并使用它们来估计瞬态图像。给定直接TOF(DTOF)传感器捕获瞬态图像,我们将我们的方法命名为ITOF2DTOF。瞬态表示是灵活的。它可以集成与基于规则的深度感测算法,对低SNR具有强大,并且可以处理实际上出现的模糊场景(例如,镜面MPI,光学串扰)。我们在真正深度传感方案中展示了先前方法上的ITOF2DTOF的好处。
translated by 谷歌翻译
在各种领域,包括搜索和救援,自动驾驶汽车导航和侦察的各个领域,形成不断变化的场景的非线图像(NLOS)图像的能力可能具有变革性。大多数现有的活性NLOS方法使用针对继电器表面并收集回返回光的时间分辨测量的脉冲激光来照亮隐藏场景。流行的方法包括对垂直壁上的矩形网格的栅格扫描,相对于感兴趣的数量,以产生共聚焦测量集合。这些固有地受到激光扫描的需求的限制。避免激光扫描的方法将隐藏场景的运动部件作为一个或两个点目标。在这项工作中,基于更完整的光学响应建模,但仍没有多个照明位置,我们演示了运动中对象的准确重建和背后的固定风景的“地图”。计数,本地化和表征运动中隐藏物体的大小,结合固定隐藏场景的映射的能力,可以大大提高各种应用中的室内情况意识。
translated by 谷歌翻译
事件摄像机是生物启发传感器,可通过标准摄像机提供显着优势,例如低延迟,高延迟,高度的时间分辨率和高动态范围。我们提出了一种使用事件摄像机的新型结构化光系统来解决准确和高速深度感测的问题。我们的设置包括一个事件摄像机和一个激光点投影仪,在16毫秒期间,在光栅扫描模式中均匀地照亮场景。以前的方法匹配相互独立的事件,因此它们在信号延迟和抖动的存在下以高扫描速度提供噪声深度估计。相比之下,我们优化了旨在利用事件相关性的能量函数,称为时空稠度。所得到的方法对事件抖动鲁棒,因此以更高的扫描速度执行更好。实验表明,我们的方法可以根据事件摄像机处理高速运动和优于最先进的3D重建方法,对于相同的采集时间,平均地将RMSE降低了83%。
translated by 谷歌翻译
飞行时间(TOF)传感器提供了一种成像模型加油,包括自主驾驶,机器人和增强现实的激光雷达。传统的TOF成像方法通过将光的脉冲发送到场景中并测量直接从场景表面反射的第一到达光子的TOF而没有任何时间延迟来估计深度。因此,在该第一响应之后的所有光子通常被认为是不需要的噪声。在本文中,我们通过使用第一到达光子的原理来涉及全光子TOF成像方法来结合第一和​​后退光子的时间 - 极化分析,这具有关于其几何和材料的丰富现场信息。为此,我们提出了一种新的时间 - 偏振反射模型,一种有效的捕获方法和重建方法,其利用由表面和子表面反射反射的光的时间 - 极性变化。所提出的全光子偏振子TOF成像方法允许通过利用系统捕获的所有光子来获取场景的深度,表面法线和材料参数,而传统的TOF成像仅从第一到达光子获得粗糙的深度。我们使用原型验证我们的模拟方法和实验。
translated by 谷歌翻译
我们建议使用贝叶斯推理和深度神经网络的技术,将地震成像中的不确定性转化为图像上执行的任务的不确定性,例如地平线跟踪。地震成像是由于带宽和孔径限制,这是一个不良的逆问题,由于噪声和线性化误差的存在而受到阻碍。但是,许多正规化方法,例如变形域的稀疏性促进,已设计为处理这些错误的不利影响,但是,这些方法具有偏向解决方案的风险,并且不提供有关图像空间中不确定性的信息以及如何提供信息。不确定性会影响图像上的某些任务。提出了一种系统的方法,以将由于数据中的噪声引起的不确定性转化为图像中自动跟踪视野的置信区间。不确定性的特征是卷积神经网络(CNN)并评估这些不确定性,样品是从CNN权重的后验分布中得出的,用于参数化图像。与传统先验相比,文献中认为,这些CNN引入了灵活的感应偏见,这非常适合各种问题。随机梯度Langevin动力学的方法用于从后验分布中采样。该方法旨在处理大规模的贝叶斯推理问题,即具有地震成像中的计算昂贵的远期操作员。除了提供强大的替代方案外,最大的后验估计值容易过度拟合外,访问这些样品还可以使我们能够在数据中的噪声中转换图像中的不确定性,以便在跟踪的视野上不确定性。例如,它承认图像上的重点标准偏差和自动跟踪视野的置信区间的估计值。
translated by 谷歌翻译
有源深度传感器,如结构化光,激光雷达和飞行时间系统以固定扫描速率均匀地样本整个场景的深度。这导致了有限的时空分辨率,其中冗余静态信息是过度采样的,并且可能会被采样珍贵运动信息。在本文中,我们提出了一种有效的生物启发事件 - 摄像机驱动深度估计算法。在我们的方法中,我们密集地动态地照亮感兴趣的领域,这取决于事件摄像机检测到的场景活动,并在没有动作的视野中稀疏地照亮区域。深度估计是通过基于事件的结构化光系统来实现,该光点投影仪组成,该激光点投影仪与调谐的第二事件的传感器耦合,以检测来自场景的激光器的反射。我们在模拟自主驾驶场景和真实室内序列中展示了我们方法的可行性,使用我们的原型。我们表明,在自动驾驶和室内环境的自然场景中,移动边缘平均对应于场景的不到10%。因此,我们的设置要求传感器仅扫描10%的场景,这可能会导致照明源的功耗较低的差价较低。虽然我们为基于事件的结构光系统提供了评估和验证,但这里提出的思想适用于Lidar,飞行时间和标准立体声等广泛的深度感测模式。视频可用于\ url {https://youtu.be/rvv9iqlyjcq}。
translated by 谷歌翻译
Spatially varying spectral modulation can be implemented using a liquid crystal spatial light modulator (SLM) since it provides an array of liquid crystal cells, each of which can be purposed to act as a programmable spectral filter array. However, such an optical setup suffers from strong optical aberrations due to the unintended phase modulation, precluding spectral modulation at high spatial resolutions. In this work, we propose a novel computational approach for the practical implementation of phase SLMs for implementing spatially varying spectral filters. We provide a careful and systematic analysis of the aberrations arising out of phase SLMs for the purposes of spatially varying spectral modulation. The analysis naturally leads us to a set of "good patterns" that minimize the optical aberrations. We then train a deep network that overcomes any residual aberrations, thereby achieving ideal spectral modulation at high spatial resolution. We show a number of unique operating points with our prototype including dynamic spectral filtering, material classification, and single- and multi-image hyperspectral imaging.
translated by 谷歌翻译
闪光照明广泛用于在弱光环境下的成像中。然而,照明强度在繁殖距离四边形掉落,这对长距离闪存成像构成了重大挑战。我们提出了一种新的Flash技术,称为“图案闪光灯”,用于长途闪光灯成像。图案闪光灯将光功率浓缩到点阵列中。与传统的均匀闪光灯相比,信号被各地的噪声淹没,图案闪光灯在整个视野的稀疏分布点上提供了更强的信号,以确保这些点处的信号从传感器噪声中脱颖而出。这使后处理能够解决重要的对象和细节。此外,图案闪光灯将纹理投影到场景上,可以将其视为深度感知的结构化光系统。鉴于新型系统,我们使用卷积神经网络开发了联合图像重建和深度估计算法。我们构建硬件原型,并在各种场景上测试提出的闪存技术。实验结果表明,在弱光环境中,我们的图案闪光在长距离的性能明显更好。
translated by 谷歌翻译
低成本毫米波(MMWAVE)通信和雷达设备的商业可用性开始提高消费市场中这种技术的渗透,为第五代(5G)的大规模和致密的部署铺平了道路(5G) - 而且以及6G网络。同时,普遍存在MMWAVE访问将使设备定位和无设备的感测,以前所未有的精度,特别是对于Sub-6 GHz商业级设备。本文使用MMWAVE通信和雷达设备在基于设备的定位和无设备感应中进行了现有技术的调查,重点是室内部署。我们首先概述关于MMWAVE信号传播和系统设计的关键概念。然后,我们提供了MMWaves启用的本地化和感应方法和算法的详细说明。我们考虑了在我们的分析中的几个方面,包括每个工作的主要目标,技术和性能,每个研究是否达到了一定程度的实现,并且该硬件平台用于此目的。我们通过讨论消费者级设备的更好算法,密集部署的数据融合方法以及机器学习方法的受过教育应用是有前途,相关和及时的研究方向的结论。
translated by 谷歌翻译
我们提出了使用镜面多声激光雷达返回的方法来检测和映射镜面表面,这些表面可能是依赖直接单刻钟返回的常规LIDAR系统看不见的。我们得出将这些多声音返回的时间和到达的表达式与镜面表面上的散射点相关联,然后使用这些表达式来制定技术以检索镜面几何时,当场景被单光束扫描或照亮时带有多光束闪光灯。我们还考虑了透明的镜面表面的特殊情况,可以将表面反射与散布在表面后面的物体上的光混合在一起。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
机器学习方法的最新进展以及扫描探针显微镜(SPMS)的可编程接口的新兴可用性使自动化和自动显微镜在科学界的关注方面推向了最前沿。但是,启用自动显微镜需要开发特定于任务的机器学习方法,了解物理发现与机器学习之间的相互作用以及完全定义的发现工作流程。反过来,这需要平衡领域科学家的身体直觉和先验知识与定义实验目标和机器学习算法的奖励,这些算法可以将它们转化为特定的实验协议。在这里,我们讨论了贝叶斯活跃学习的基本原理,并说明了其对SPM的应用。我们从高斯过程作为一种简单的数据驱动方法和对物理模型的贝叶斯推断作为基于物理功能的扩展的贝叶斯推断,再到更复杂的深内核学习方法,结构化的高斯过程和假设学习。这些框架允许使用先验数据,在光谱数据中编码的特定功能以及在实验过程中表现出的物理定律的探索。讨论的框架可以普遍应用于结合成像和光谱,SPM方法,纳米识别,电子显微镜和光谱法以及化学成像方法的所有技术,并且对破坏性或不可逆测量的影响特别影响。
translated by 谷歌翻译
$ \ Texit {Fermi} $数据中的银河系中多余(GCE)的两个领先假设是一个未解决的微弱毫秒脉冲条件(MSP)和暗物质(DM)湮灭。这些解释之间的二分法通常通过将它们建模为两个单独的发射组分来反映。然而,诸如MSP的点源(PSS)在超微弱的极限中具有统计变质的泊松发射(正式的位置,预期每个来源平均贡献远低于一个光子),导致可能提出问题的歧义如排放是否是PS样或性质中的泊松人。我们提出了一种概念上的新方法,以统一的方式描述PS和泊松发射,并且刚刚从此获得的结果中获得了对泊松组件的约束。为了实现这种方法,我们利用深度学习技术,围绕基于神经网络的方法,用于直方图回归,其表达量数量的不确定性。我们证明我们的方法对许多困扰先前接近的系统,特别是DM / PS误操作来稳健。在$ \ texit {fermi} $数据中,我们发现由$ \ sim4 \ times 10 ^ {-11} \ \ text {counts} \ {counts} \ text {counts} \ text {counts} \ \ text {cm} ^ { - 2} \ \ text {s} ^ { - 1} $(对应于$ \ sim3 - 4 $每pL期望计数),这需要$ n \ sim \ mathcal {o}( 10 ^ 4)$源来解释整个过剩(中位数价值$ n = \文本{29,300} $横跨天空)。虽然微弱,但这种SCD允许我们获得95%信心的Poissonian比赛的约束$ \ eta_p \ leq 66 \%$。这表明大量的GCE通量是由于PSS 。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
Modern mobile burst photography pipelines capture and merge a short sequence of frames to recover an enhanced image, but often disregard the 3D nature of the scene they capture, treating pixel motion between images as a 2D aggregation problem. We show that in a "long-burst", forty-two 12-megapixel RAW frames captured in a two-second sequence, there is enough parallax information from natural hand tremor alone to recover high-quality scene depth. To this end, we devise a test-time optimization approach that fits a neural RGB-D representation to long-burst data and simultaneously estimates scene depth and camera motion. Our plane plus depth model is trained end-to-end, and performs coarse-to-fine refinement by controlling which multi-resolution volume features the network has access to at what time during training. We validate the method experimentally, and demonstrate geometrically accurate depth reconstructions with no additional hardware or separate data pre-processing and pose-estimation steps.
translated by 谷歌翻译
对于许多强化学习(RL)应用程序,指定奖励是困难的。本文考虑了一个RL设置,其中代理仅通过查询可以询问可以的专家来获取有关奖励的信息,例如,评估单个状态或通过轨迹提供二进制偏好。从如此昂贵的反馈中,我们的目标是学习奖励的模型,允许标准RL算法实现高预期的回报,尽可能少的专家查询。为此,我们提出了信息定向奖励学习(IDRL),它使用奖励的贝叶斯模型,然后选择要最大化信息增益的查询,这些查询是有关合理的最佳策略之间的返回差异的差异。与针对特定类型查询设计的先前主动奖励学习方法相比,IDRL自然地适应不同的查询类型。此外,它通过将焦点转移降低奖励近似误差来实现类似或更好的性能,从而降低奖励近似误差,以改善奖励模型引起的策略。我们支持我们的调查结果,在多个环境中进行广泛的评估,并具有不同的查询类型。
translated by 谷歌翻译