作为一种引起巨大关注的新兴技术,通过分析继电器表面上的漫反射来重建隐藏物体的非视线(NLOS)成像,具有广泛的应用前景,在自主驾驶,医学成像和医学成像领域防御。尽管信噪比低(SNR)和高不良效率的挑战,但近年来,NLOS成像已迅速发展。大多数当前的NLOS成像技术使用传统的物理模型,通过主动或被动照明构建成像模型,并使用重建算法来恢复隐藏场景。此外,NLOS成像的深度学习算法最近也得到了很多关注。本文介绍了常规和深度学习的NLOS成像技术的全面概述。此外,我们还调查了新的拟议的NLOS场景,并讨论了现有技术的挑战和前景。这样的调查可以帮助读者概述不同类型的NLOS成像,从而加速了在角落周围看到的发展。
translated by 谷歌翻译
飞行时间(TOF)传感器提供了一种成像模型加油,包括自主驾驶,机器人和增强现实的激光雷达。传统的TOF成像方法通过将光的脉冲发送到场景中并测量直接从场景表面反射的第一到达光子的TOF而没有任何时间延迟来估计深度。因此,在该第一响应之后的所有光子通常被认为是不需要的噪声。在本文中,我们通过使用第一到达光子的原理来涉及全光子TOF成像方法来结合第一和​​后退光子的时间 - 极化分析,这具有关于其几何和材料的丰富现场信息。为此,我们提出了一种新的时间 - 偏振反射模型,一种有效的捕获方法和重建方法,其利用由表面和子表面反射反射的光的时间 - 极性变化。所提出的全光子偏振子TOF成像方法允许通过利用系统捕获的所有光子来获取场景的深度,表面法线和材料参数,而传统的TOF成像仅从第一到达光子获得粗糙的深度。我们使用原型验证我们的模拟方法和实验。
translated by 谷歌翻译
视觉的触觉传感器由于经济实惠的高分辨率摄像机和成功的计算机视觉技术而被出现为机器人触摸的有希望的方法。但是,它们的物理设计和他们提供的信息尚不符合真实应用的要求。我们提供了一种名为Insight的强大,柔软,低成本,视觉拇指大小的3D触觉传感器:它不断在其整个圆锥形感测表面上提供定向力分布图。围绕内部单眼相机构造,传感器仅在刚性框架上仅成型一层弹性体,以保证灵敏度,鲁棒性和软接触。此外,Insight是第一个使用准直器将光度立体声和结构光混合的系统来检测其易于更换柔性外壳的3D变形。通过将图像映射到3D接触力的空间分布(正常和剪切)的深神经网络推断力信息。洞察力在0.4毫米的总空间分辨率,力量幅度精度约为0.03 n,并且对于具有不同接触面积的多个不同触点,在0.03-2 n的范围内的5度大约5度的力方向精度。呈现的硬件和软件设计概念可以转移到各种机器人部件。
translated by 谷歌翻译
安装在微空中车辆(MAV)上的地面穿透雷达是有助于协助人道主义陆地间隙的工具。然而,合成孔径雷达图像的质量取决于雷达天线的准确和精确运动估计以及与MAV产生信息性的观点。本文介绍了一个完整的自动空气缩进的合成孔径雷达(GPSAR)系统。该系统由空间校准和时间上同步的工业级传感器套件组成,使得在地面上方,雷达成像和光学成像。自定义任务规划框架允许在地上控制地上的Stripmap和圆形(GPSAR)轨迹的生成和自动执行,以及空中成像调查飞行。基于因子图基于Dual接收机实时运动(RTK)全局导航卫星系统(GNSS)和惯性测量单元(IMU)的测量值,以获得精确,高速平台位置和方向。地面真理实验表明,传感器时机为0.8美元,正如0.1美元的那样,定位率为1 kHz。与具有不确定标题初始化的单个位置因子相比,双位置因子配方可提高高达40%,批量定位精度高达59%。我们的现场试验验证了本地化准确性和精度,使得能够相干雷达测量和检测在沙子中埋入的雷达目标。这验证了作为鸟瞰着地图检测系统的潜力。
translated by 谷歌翻译
低成本毫米波(MMWAVE)通信和雷达设备的商业可用性开始提高消费市场中这种技术的渗透,为第五代(5G)的大规模和致密的部署铺平了道路(5G) - 而且以及6G网络。同时,普遍存在MMWAVE访问将使设备定位和无设备的感测,以前所未有的精度,特别是对于Sub-6 GHz商业级设备。本文使用MMWAVE通信和雷达设备在基于设备的定位和无设备感应中进行了现有技术的调查,重点是室内部署。我们首先概述关于MMWAVE信号传播和系统设计的关键概念。然后,我们提供了MMWaves启用的本地化和感应方法和算法的详细说明。我们考虑了在我们的分析中的几个方面,包括每个工作的主要目标,技术和性能,每个研究是否达到了一定程度的实现,并且该硬件平台用于此目的。我们通过讨论消费者级设备的更好算法,密集部署的数据融合方法以及机器学习方法的受过教育应用是有前途,相关和及时的研究方向的结论。
translated by 谷歌翻译
可靠地定量自然和人为气体释放(例如,从海底进入海洋的自然和人为气体释放(例如,Co $ _2 $,甲烷),最终是大气,是一个具有挑战性的任务。虽然船舶的回声探测器允许在水中检测水中的自由气,但是即使从较大的距离中,精确量化需要诸如未获得的升高速度和气泡尺寸分布的参数。光学方法的意义上是互补的,即它们可以提供从近距离的单个气泡或气泡流的高时和空间分辨率。在这一贡献中,我们介绍了一种完整的仪器和评估方法,用于光学气泡流特征。专用仪器采用高速深海立体声摄像机系统,可在部署在渗透网站以进行以后的自动分析时录制泡泡图像的Tbleabytes。对于几分钟的短序列可以获得泡特性,然后将仪器迁移到其他位置,或者以自主间隔模式迁移到几天内,以捕获由于电流和压力变化和潮汐循环引起的变化。除了报告泡沫特征的步骤旁边,我们仔细评估了可达准确性并提出了一种新颖的校准程序,因为由于缺乏点对应,仅使用气泡的剪影。该系统已成功运营,在太平洋高达1000万水深,以评估甲烷通量。除了样品结果外,我们还会报告在开发期间汲取的故障案例和经验教训。
translated by 谷歌翻译
基于掩模的无透镜相机可以是平坦的,薄型和轻质的,这使得它们适用于具有大表面积和任意形状的计算成像系统的新颖设计。尽管最近在无晶体相机的进展中,由于底层测量系统的不良状态,从透镜相机恢复的图像质量往往差。在本文中,我们建议使用编码照明来提高用无透镜相机重建的图像的质量。在我们的成像模型中,场景/物体被多种编码照明模式照亮,因为无透镜摄像机记录传感器测量。我们设计并测试了许多照明模式,并观察到变速点(和相关的正交)模式提供了最佳的整体性能。我们提出了一种快速和低复杂性的恢复算法,可利用我们系统中的可分离性和块对角线结构。我们提出了仿真结果和硬件实验结果,以证明我们的提出方法可以显着提高重建质量。
translated by 谷歌翻译
事件摄像机是生物启发传感器,可通过标准摄像机提供显着优势,例如低延迟,高延迟,高度的时间分辨率和高动态范围。我们提出了一种使用事件摄像机的新型结构化光系统来解决准确和高速深度感测的问题。我们的设置包括一个事件摄像机和一个激光点投影仪,在16毫秒期间,在光栅扫描模式中均匀地照亮场景。以前的方法匹配相互独立的事件,因此它们在信号延迟和抖动的存在下以高扫描速度提供噪声深度估计。相比之下,我们优化了旨在利用事件相关性的能量函数,称为时空稠度。所得到的方法对事件抖动鲁棒,因此以更高的扫描速度执行更好。实验表明,我们的方法可以根据事件摄像机处理高速运动和优于最先进的3D重建方法,对于相同的采集时间,平均地将RMSE降低了83%。
translated by 谷歌翻译
单光子雪崩二极管(SPAD)在深度传感任务中越来越受欢迎。然而,由于堆积的效果,在高环境光线存在下仍然在努力挣扎。常规技术利用固定或异步门控以最小化堆积效果,但这些门控计划是所有非自适应的,因为它们无法将诸如场景前导者和之前的光子检测等因素结合到其门控策略中。我们提出了一种基于汤普森采样的自适应门控计划。自适应门控基于先前的光子观察周期性地更新栅极位置,以便最小化深度误差。我们的实验表明,即使在强大的阳光条件下在户外操作,我们的门控策略也会显着降低深度重建误差和采集时间。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
本报告讨论了SBIR阶段的结果,我努力证明了基于微速度计的长波红外(LWIR)探测器灵敏度的显着改善的可行性,特别是对于3D测量。由此产生的低Swap-C热深度感测系统将实现自主空气车辆的态势认识,用于高级空气移动性(AAM)。它将提供周围环境的鲁棒3D信息,包括低对比度静态和移动物体,远距离降低的视觉条件和GPS拒绝区域。我们的多传感器3D感知通过COTS未冷却热传感器启用了LWIR传感器的主要弱点 - 通过增加系统敏感度,对比度为低对比度。没有适用于评估这项技术的可用热图像集,使数据集采集我们的第一个目标。我们讨论了具有十六件640pix x 512pix lwir探测器的原型系统的设计和构造,对子像素分辨率,捕获和处理同步图像的相机校准。结果表明,仅用于胃桶肥无速数据的3.84倍对比度和额外的5.5倍 - 含有三角细胞积累,达到40 mk传感器的系统噪声等效温差(NETD)。
translated by 谷歌翻译
通过动态散射介质进行非侵入性光学成像具有许多重要的生物医学应用,但仍然是一项艰巨的任务。尽管标准弥漫成像方法测量光吸收或荧光发射,但也良好的是,散射的相干光的时间相关性通过组织像光强度一样扩散。然而,迄今为止,很少有作品旨在通过实验测量和处理这种时间相关数据,以证明去相关动力学的深度组织视频重建。在这项工作中,我们利用单光子雪崩二极管(SPAD)阵列摄像机同时监视单photon水平的斑点波动的时间动力学,从12种不同的幻影组织通过定制的纤维束阵列传递的位置。然后,我们应用深度神经网络将所获得的单光子测量值转换为迅速去摩擦组织幻像下散射动力学的视频。我们证明了重建瞬态(0.1-0.4s)动态事件的图像的能力,该动态事件发生在非相关的组织幻影下,并以毫米级分辨率进行重构,并突出显示我们的模型如何灵活地扩展到埋藏的phantom船只内的流速。
translated by 谷歌翻译
间接飞行时间(ITOF)相机是一个有希望的深度传感技术。然而,它们容易出现由多路径干扰(MPI)和低信噪比(SNR)引起的错误。传统方法,在去噪后,通过估计编码深度的瞬态图像来减轻MPI。最近,在不使用中间瞬态表示的情况下,共同去噪和减轻MPI的数据驱动方法已经成为最先进的。在本文中,我们建议重新审视瞬态代表。使用数据驱动的Priors,我们将其插入/推断ITOF频率并使用它们来估计瞬态图像。给定直接TOF(DTOF)传感器捕获瞬态图像,我们将我们的方法命名为ITOF2DTOF。瞬态表示是灵活的。它可以集成与基于规则的深度感测算法,对低SNR具有强大,并且可以处理实际上出现的模糊场景(例如,镜面MPI,光学串扰)。我们在真正深度传感方案中展示了先前方法上的ITOF2DTOF的好处。
translated by 谷歌翻译
使用FASS-MVS,我们提出了一种具有表面感知半全局匹配的快速多视图立体声的方法,其允许从UAV捕获的单眼航空视频数据中快速深度和正常地图估计。反过来,由FASS-MVS估计的数据促进在线3D映射,这意味着在获取或接收到图像数据时立即和递增地生成场景的3D地图。 FASS-MVS由分层处理方案组成,其中深度和正常数据以及相应的置信度分数以粗略的方式估计,允许有效地处理由倾斜图像所固有的大型场景深度低无人机。实际深度估计采用用于致密多图像匹配的平面扫描算法,以产生深度假设,通过表面感知半全局优化来提取实际深度图,从而减少了SGM的正平行偏压。给定估计的深度图,然后通过将深度图映射到点云中并计算狭窄的本地邻域内的普通向量来计算像素 - 方面正常信息。在彻底的定量和消融研究中,我们表明,由FASS-MV计算的3D信息的精度接近离线多视图立体声的最先进方法,误差甚至没有一个幅度而不是科麦。然而,同时,FASS-MVS的平均运行时间估计单个深度和正常地图的距离小于ColMAP的14%,允许在1-中执行全高清图像的在线和增量处理2 Hz。
translated by 谷歌翻译
神经网络可以表示和准确地重建静态3D场景的辐射场(例如,NERF)。有几种作品将这些功能扩展到用单眼视频捕获的动态场景,具有很有希望的性能。然而,已知单眼设置是一个受限制的问题,因此方法依赖于数据驱动的前导者来重建动态内容。我们用飞行时间(TOF)相机的测量来替换这些前沿,并根据连续波TOF相机的图像形成模型引入神经表示。我们而不是使用加工的深度映射,我们模拟了原始的TOF传感器测量,以改善重建质量,避免低反射区域,多路径干扰和传感器的明确深度范围的问题。我们表明,这种方法改善了动态场景重建对错误校准和大型运动的鲁棒性,并讨论了现在可在现代智能手机上提供的RGB + TOF传感器的好处和限制。
translated by 谷歌翻译
气孔(螳螂虾)视觉系统最近提供了一种用于设计范式转换极化和多光谱成像传感器的蓝图,使解决方案能够挑战医疗和遥感问题。然而,这些生物透视传感器缺乏气孔视觉系统的高动态范围(HDR)和异步偏振视觉功能,将时间分辨率限制为\〜12 ms和动态范围到\〜72 dB。在这里,我们提出了一种新的Stomatopod-Inspireation相机,其模仿持续和瞬态的生物视觉途径,以节省超出最大奈奎斯特帧速率的功率和样本数据。该生物启发传感器同时捕获同步强度帧和异步偏振亮度改变信息与百万倍的照明范围内的子毫秒延迟。我们的PDAVIS摄像机由346x260像素组成,组织在2×2宏像素中,该型滤光器有4个线性偏振滤波器偏移45度。使用基于低成本和延迟事件的算法和更准确但深度神经网络的更准确而是重建极化信息。我们的传感器用于图像在快速循环载荷下观察牛筋膜中单胶原纤维的单胶原纤维的动态性能
translated by 谷歌翻译
本文提出了一种新型电镀摄像机的校准算法,尤其是多焦距配置,其中使用了几种类型的微透镜,仅使用原始图像。电流校准方法依赖于简化投影模型,使用重建图像的功能,或者需要每种类型的微透镜进行分离的校准。在多聚焦配置中,根据微透镜焦距,场景的相同部分将展示不同量的模糊。通常,使用具有最小模糊量的微图像。为了利用所有可用的数据,我们建议在新推出的模糊的模糊(BAP)功能的帮助下,在新的相机模型中明确地模拟Defocus模糊。首先,它用于检索初始相机参数的预校准步骤,而第二步骤,以表达在我们的单个优化过程中最小化的新成本函数。第三,利用它来校准微图像之间的相对模糊。它将几何模糊,即模糊圈链接到物理模糊,即点传播函数。最后,我们使用产生的模糊概况来表征相机的景深。实际数据对受控环境的定量评估展示了我们校准的有效性。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
本文介绍了我们拦截更快的入侵者无人机的方法,这是受MBZIRC 2020挑战1.的启发1.通过利用对入侵者轨迹的形状的先验知识,我们可以计算拦截点。目标跟踪基于Yolov3微型卷积神经网络的图像处理,并结合使用饰品安装的ZED ZED迷你立体声摄像机的深度计算。我们使用摄像头的RGB和深度数据,设计降噪的直方图过滤器来提取目标的3D位置。获得目标位置的3D测量值用于计算图八形轨迹的位置,方向和大小,我们使用Bernoulli Lemniscate近似。一旦近似被认为是足够精确的,可以通过观察值和估计之间的距离来测量,我们将计算一个拦截点,以将拦截器无人机直接放在入侵者的路径上。根据MBZIRC竞争期间收集的经验,我们的方法已在模拟和现场实验中得到了验证。我们的结果证实,我们已经开发了一个有效的视觉感知模块,该模块可以提取以足以支持拦截计划的精确性来描述入侵者无人机运动的信息。在大多数模拟遭遇中,我们可以跟踪和拦截比拦截器快30%的目标。在非结构化环境中的相应测试产生了12个成功结果中的9个。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译