Domain adaptation is an important emerging topic in computer vision. In this paper, we present one of the first studies of domain shift in the context of object recognition. We introduce a method that adapts object models acquired in a particular visual domain to new imaging conditions by learning a transformation that minimizes the effect of domain-induced changes in the feature distribution. The transformation is learned in a supervised manner and can be applied to categories for which there are no labeled examples in the new domain. While we focus our evaluation on object recognition tasks, the transform-based adaptation technique we develop is general and could be applied to non-image data. Another contribution is a new multi-domain object database, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.
translated by 谷歌翻译
Recent reports suggest that a generic supervised deep CNN model trained on a large-scale dataset reduces, but does not remove, dataset bias. Fine-tuning deep models in a new domain can require a significant amount of labeled data, which for many applications is simply not available. We propose a new CNN architecture to exploit unlabeled and sparsely labeled target domain data. Our approach simultaneously optimizes for domain invariance to facilitate domain transfer and uses a soft label distribution matching loss to transfer information between tasks. Our proposed adaptation method offers empirical performance which exceeds previously published results on two standard benchmark visual domain adaptation tasks, evaluated across supervised and semi-supervised adaptation settings.
translated by 谷歌翻译
Transfer learning is established as an effective technology in computer vision for leveraging rich labeled data in the source domain to build an accurate classifier for the target domain. However, most prior methods have not simultaneously reduced the difference in both the marginal distribution and conditional distribution between domains. In this paper, we put forward a novel transfer learning approach, referred to as Joint Distribution Adaptation (JDA). Specifically, JDA aims to jointly adapt both the marginal distribution and conditional distribution in a principled dimensionality reduction procedure, and construct new feature representation that is effective and robust for substantial distribution difference. Extensive experiments verify that JDA can significantly outperform several state-of-the-art methods on four types of cross-domain image classification problems.
translated by 谷歌翻译
Unlike human learning, machine learning often fails to handle changes between training (source) and test (target) input distributions. Such domain shifts, common in practical scenarios, severely damage the performance of conventional machine learning methods. Supervised domain adaptation methods have been proposed for the case when the target data have labels, including some that perform very well despite being "frustratingly easy" to implement. However, in practice, the target domain is often unlabeled, requiring unsupervised adaptation. We propose a simple, effective, and efficient method for unsupervised domain adaptation called CORrelation ALignment (CORAL). CORAL minimizes domain shift by aligning the second-order statistics of source and target distributions, without requiring any target labels. Even though it is extraordinarily simple-it can be implemented in four lines of Matlab code-CORAL performs remarkably well in extensive evaluations on standard benchmark datasets."Everything should be made as simple as possible, but not simpler."
translated by 谷歌翻译
We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains.The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages.We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.
translated by 谷歌翻译
This work provides a unified framework for addressing the problem of visual supervised domain adaptation and generalization with deep models. The main idea is to exploit the Siamese architecture to learn an embedding subspace that is discriminative, and where mapped visual domains are semantically aligned and yet maximally separated. The supervised setting becomes attractive especially when only few target data samples need to be labeled. In this scenario, alignment and separation of semantic probability distributions is difficult because of the lack of data. We found that by reverting to point-wise surrogates of distribution distances and similarities provides an effective solution. In addition, the approach has a high "speed" of adaptation, which requires an extremely low number of labeled target training samples, even one per category can be effective. The approach is extended to domain generalization. For both applications the experiments show very promising results.
translated by 谷歌翻译
虽然在许多域内生成并提供了大量的未标记数据,但对视觉数据的自动理解的需求高于以往任何时候。大多数现有机器学习模型通常依赖于大量标记的训练数据来实现高性能。不幸的是,在现实世界的应用中,不能满足这种要求。标签的数量有限,手动注释数据昂贵且耗时。通常需要将知识从现有标记域传输到新域。但是,模型性能因域之间的差异(域移位或数据集偏差)而劣化。为了克服注释的负担,域适应(DA)旨在在将知识从一个域转移到另一个类似但不同的域中时减轻域移位问题。无监督的DA(UDA)处理标记的源域和未标记的目标域。 UDA的主要目标是减少标记的源数据和未标记的目标数据之间的域差异,并在培训期间在两个域中学习域不变的表示。在本文中,我们首先定义UDA问题。其次,我们从传统方法和基于深度学习的方法中概述了不同类别的UDA的最先进的方法。最后,我们收集常用的基准数据集和UDA最先进方法的报告结果对视觉识别问题。
translated by 谷歌翻译
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. Due to the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies of transfer learning in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Unlike previous surveys, this survey paper reviews more than forty representative transfer learning approaches, especially homogeneous transfer learning approaches, from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, over twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.
translated by 谷歌翻译
Deep domain adaptation has emerged as a new learning technique to address the lack of massive amounts of labeled data. Compared to conventional methods, which learn shared feature subspaces or reuse important source instances with shallow representations, deep domain adaptation methods leverage deep networks to learn more transferable representations by embedding domain adaptation in the pipeline of deep learning. There have been comprehensive surveys for shallow domain adaptation, but few timely reviews the emerging deep learning based methods. In this paper, we provide a comprehensive survey of deep domain adaptation methods for computer vision applications with four major contributions. First, we present a taxonomy of different deep domain adaptation scenarios according to the properties of data that define how two domains are diverged. Second, we summarize deep domain adaptation approaches into several categories based on training loss, and analyze and compare briefly the state-of-the-art methods under these categories. Third, we overview the computer vision applications that go beyond image classification, such as face recognition, semantic segmentation and object detection. Fourth, some potential deficiencies of current methods and several future directions are highlighted.
translated by 谷歌翻译
Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches for supervised learning have performed well, they assume that training and testing data are drawn from the same distribution, which may not always be the case. As a complement to this challenge, single-source unsupervised domain adaptation can handle situations where a network is trained on labeled data from a source domain and unlabeled data from a related but different target domain with the goal of performing well at test-time on the target domain. Many single-source and typically homogeneous unsupervised deep domain adaptation approaches have thus been developed, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially-costly target data labels. This survey will compare these approaches by examining alternative methods, the unique and common elements, results, and theoretical insights. We follow this with a look at application areas and open research directions.
translated by 谷歌翻译
We evaluate whether features extracted from the activation of a deep convolutional network trained in a fully supervised fashion on a large, fixed set of object recognition tasks can be repurposed to novel generic tasks. Our generic tasks may differ significantly from the originally trained tasks and there may be insufficient labeled or unlabeled data to conventionally train or adapt a deep architecture to the new tasks. We investigate and visualize the semantic clustering of deep convolutional features with respect to a variety of such tasks, including scene recognition, domain adaptation, and fine-grained recognition challenges. We compare the efficacy of relying on various network levels to define a fixed feature, and report novel results that significantly outperform the state-of-the-art on several important vision challenges. We are releasing DeCAF, an open-source implementation of these deep convolutional activation features, along with all associated network parameters to enable vision researchers to be able to conduct experimentation with deep representations across a range of visual concept learning paradigms.
translated by 谷歌翻译
Top-performing deep architectures are trained on massive amounts of labeled data. In the absence of labeled data for a certain task, domain adaptation often provides an attractive option given that labeled data of similar nature but from a different domain (e.g. synthetic images) are available. Here, we propose a new approach to domain adaptation in deep architectures that can be trained on large amount of labeled data from the source domain and large amount of unlabeled data from the target domain (no labeled targetdomain data is necessary).As the training progresses, the approach promotes the emergence of "deep" features that are (i) discriminative for the main learning task on the source domain and (ii) invariant with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a simple new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation.Overall, the approach can be implemented with little effort using any of the deep-learning packages. The method performs very well in a series of image classification experiments, achieving adaptation effect in the presence of big domain shifts and outperforming previous state-ofthe-art on Office datasets.
translated by 谷歌翻译
Many standard computer vision datasets exhibit biases due to a variety of sources including illumination condition, imaging system, and preference of dataset collectors. Biases like these can have downstream effects in the use of vision datasets in the construction of generalizable techniques, especially for the goal of the creation of a classification system capable of generalizing to unseen and novel datasets. In this work we propose Unbiased Metric Learning (UML), a metric learning approach, to achieve this goal. UML operates in the following two steps: (1) By varying hyperparameters, it learns a set of less biased candidate distance metrics on training examples from multiple biased datasets. The key idea is to learn a neighborhood for each example, which consists of not only examples of the same category from the same dataset, but those from other datasets. The learning framework is based on structural SVM. (2) We do model validation on a set of weakly-labeled web images retrieved by issuing class labels as keywords to search engine. The metric with best validation performance is selected. Although the web images sometimes have noisy labels, they often tend to be less biased, which makes them suitable for the validation set in our task. Cross-dataset image classification experiments are carried out. Results show significant performance improvement on four well-known computer vision datasets.
translated by 谷歌翻译
Adversarial learning methods are a promising approach to training robust deep networks, and can generate complex samples across diverse domains. They also can improve recognition despite the presence of domain shift or dataset bias: several adversarial approaches to unsupervised domain adaptation have recently been introduced, which reduce the difference between the training and test domain distributions and thus improve generalization performance. Prior generative approaches show compelling visualizations, but are not optimal on discriminative tasks and can be limited to smaller shifts. Prior discriminative approaches could handle larger domain shifts, but imposed tied weights on the model and did not exploit a GAN-based loss. We first outline a novel generalized framework for adversarial adaptation, which subsumes recent state-of-the-art approaches as special cases, and we use this generalized view to better relate the prior approaches. We propose a previously unexplored instance of our general framework which combines discriminative modeling, untied weight sharing, and a GAN loss, which we call Adversarial Discriminative Domain Adaptation (ADDA). We show that ADDA is more effective yet considerably simpler than competing domain-adversarial methods, and demonstrate the promise of our approach by exceeding state-of-the-art unsupervised adaptation results on standard cross-domain digit classification tasks and a new more difficult cross-modality object classification task.
translated by 谷歌翻译
在本文中,我们提出了一种设计用于图形域的域适配算法。给定具有许多标记节点的源图和具有少数或没有标记节点的目标图,我们的目标是通过利用两个图表上标签函数的变化的特征之间的相似性来估计目标标签。我们对源和目标域的假设是标签函数的本地行为,例如图表上的速度和变化的变化速度,在两个图形之间存在相似之处。我们通过求解标签信息基于之前的标签函数的投影在源图和目标图之间类似地将标签信息从源图传输到目标图来求解从源图到目标图的优化问题来估计未知的目标标签。为了有效地捕获图形上标签函数的局部变化,光谱图小波用作图形基础。与参考域适配方法相比,各种数据集的实验表明,该方法产生了相当令人满意的分类精度。
translated by 谷歌翻译
The problem of domain generalization is to take knowledge acquired from a number of related domains where training data is available, and to then successfully apply it to previously unseen domains. We propose a new feature learning algorithm, Multi-Task Autoencoder (MTAE), that provides good generalization performance for crossdomain object recognition.Our algorithm extends the standard denoising autoencoder framework by substituting artificially induced corruption with naturally occurring inter-domain variability in the appearance of objects. Instead of reconstructing images from noisy versions, MTAE learns to transform the original image into analogs in multiple related domains. It thereby learns features that are robust to variations across domains. The learnt features are then used as inputs to a classifier.We evaluated the performance of the algorithm on benchmark image recognition datasets, where the task is to learn features from multiple datasets and to then predict the image label from unseen datasets. We found that (denoising) MTAE outperforms alternative autoencoder-based models as well as the current state-of-the-art algorithms for domain generalization.
translated by 谷歌翻译
虽然无监督的域适应(UDA)算法,即,近年来只有来自源域的标记数据,大多数算法和理论结果侧重于单源无监督域适应(SUDA)。然而,在实际情况下,标记的数据通常可以从多个不同的源收集,并且它们可能不仅不同于目标域而且彼此不同。因此,来自多个源的域适配器不应以相同的方式进行建模。最近基于深度学习的多源无监督域适应(Muda)算法专注于通过在通用特征空间中的所有源极和目标域的分布对齐来提取所有域的公共域不变表示。但是,往往很难提取Muda中所有域的相同域不变表示。此外,这些方法匹配分布而不考虑类之间的域特定的决策边界。为了解决这些问题,我们提出了一个新的框架,具有两个对准阶段的Muda,它不仅将每对源和目标域的分布对齐,而且还通过利用域特定的分类器的输出对准决策边界。广泛的实验表明,我们的方法可以对图像分类的流行基准数据集实现显着的结果。
translated by 谷歌翻译
Recent work reported the label alignment property in a supervised learning setting: the vector of all labels in the dataset is mostly in the span of the top few singular vectors of the data matrix. Inspired by this observation, we derive a regularization method for unsupervised domain adaptation. Instead of regularizing representation learning as done by popular domain adaptation methods, we regularize the classifier so that the target domain predictions can to some extent ``align" with the top singular vectors of the unsupervised data matrix from the target domain. In a linear regression setting, we theoretically justify the label alignment property and characterize the optimality of the solution of our regularization by bounding its distance to the optimal solution. We conduct experiments to show that our method can work well on the label shift problems, where classic domain adaptation methods are known to fail. We also report mild improvement over domain adaptation baselines on a set of commonly seen MNIST-USPS domain adaptation tasks and on cross-lingual sentiment analysis tasks.
translated by 谷歌翻译
域适应性是现代机器学习中的一种流行范式,旨在解决培训或验证数据集之间具有用于学习和测试分类器(源域)和潜在的大型未标记数据集的培训或验证数据集之间的分歧问题,其中利用了模型(目标域)(目标域)(目标域) 。任务是找到源数据集的源和目标数据集的这种常见表示,其中源数据集提供了培训的信息,因此可以最大程度地减少来源和目标之间的差异。目前,最流行的领域适应性解决方案是基于训练神经网络,这些神经网络结合了分类和对抗性学习模块,这些模块是饥饿的,通常很难训练。我们提出了一种称为域适应性主成分分析(DAPCA)的方法,该方法发现线性减少的数据表示有助于解决域适应任务。 DAPCA基于数据点对之间引入正权重,并概括了主成分分析的监督扩展。 DAPCA代表一种迭代算法,因此在每次迭代中都解决了一个简单的二次优化问题。保证算法的收敛性,并且在实践中的迭代次数很少。我们验证了先前提出的用于解决域适应任务的基准的建议算法,还显示了在生物医学应用中对单细胞法数据集进行分析中使用DAPCA的好处。总体而言,考虑到源域和目标域之间可能的差异,DAPCA可以作为许多机器学习应用程序中有用的预处理步骤。
translated by 谷歌翻译
域的概括旨在学习一个通用模型,该模型在看不见的目标域上表现良好,并结合了来自多个源域的知识。在这项研究中,我们考虑了以下场景,在不同类别跨领域的条件分布之间发生不同的领域变化。当源域中的标记样品受到限制时,现有方法不足以鲁棒。为了解决这个问题,我们提出了一个新型的域泛化框架,称为Wasserstein分布在鲁棒域的概括(WDRDG),灵感来自分布稳健优化的概念。我们鼓励对特定于类的Wasserstein不确定性集中有条件分布的鲁棒性,并优化分类器在这些不确定性集上的最差性能。我们进一步开发了一个测试时间适应模块,利用最佳运输来量化未见目标域和源域之间的关系,以使目标数据适应性推断。旋转MNIST,PACS和VLCS数据集的实验表明,我们的方法可以有效地平衡挑战性概括场景中的鲁棒性和可区分性。
translated by 谷歌翻译