对于四足运动的无模型深度增强学习,机器人配置的初始化对于数据效率和鲁棒性至关重要。这项工作侧重于通过自动发现初始状态的数据效率和鲁棒性的算法改进,这是由我们所提出的基于可访问度量的K访问算法实现的。具体而言,我们制定了可访问性度量来测量两个任意状态之间的转换难度,并提出了一种用于基于可访问度量的静态构成集群的质心的新颖的K访问算法。通过使用发现的质心静态姿势作为初始状态,我们可以通过减少冗余探索来提高数据效率,并通过更有效地从质心探索到采样的姿势来提高鲁棒性。专注于秋季恢复作为一套非常艰难的运动技能,我们使用8-DOF四极其机器人略微验证了我们的方法。与基线相比,我们的方法的学习曲线会收敛得更快,只需要60%的训练集。通过我们的方法,机器人可以在99.4%的测试用例的99.4%内成功恢复到常规姿势。此外,该方法可以概括为成功的其他困难技能,例如回空。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
从任意堕落状态中起床是一种基本的人类技能。现有的学习这种技能的方法通常会产生高度动态和不稳定的起床动作,这不像人类的起床策略,或者基于跟踪记录的人类起床运动。在本文中,我们提出了一种使用强化学习的分阶段方法,而无需求助于运动捕获数据。该方法首先利用了强大的字符模型,从而有助于发现解决方案模式。然后,第二阶段学会了调整控制策略,以逐步与角色的较弱版本一起使用。最后,第三阶段学习控制政策,这些政策可以以较慢的速度重现较弱的起床动作。我们表明,在多个运行中,该方法可以发现各种各样的起床策略,并以各种速度执行它们。结果通常会产生采用最终站立策略的策略,这些策略是从所有初始状态中看到的恢复动作所共有的。但是,我们还发现了对俯卧和仰卧初始堕落状态的不同策略的政策。学识渊博的起床控制策略通常具有明显的静态稳定性,即,在起床运动过程中,它们可以在各个点停下来。我们进一步测试了新的限制场景的方法,例如在演员表中有一条腿和手臂。
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
直到最近,通过深度加强学习(DRL)已经实现了强大的机器人机器人。然而,为了高效地学习参数化的BipeDal行走,通常需要开发的参考资料,将性能限制为参考文献的性能。在本文中,我们建议设计用于从参考文献的模仿学习的自适应奖励功能。鼓励代理人模仿当其性能较低时的参考资料,同时在达到参考资料的限制时追求高性能。我们进一步证明,开发的参考资料可以通过在没有费力调整的情况下产生的低质量参考,并且只要他们能够提供先验的知识即可加快学习过程即可才能部署。
translated by 谷歌翻译
现在,最先进的强化学习能够在模拟中学习双皮亚机器人的多功能运动,平衡和推送能力。然而,现实差距大多被忽略了,模拟结果几乎不会转移到真实硬件上。在实践中,它是不成功的,因为物理学过度简化,硬件限制被忽略,或者不能保证规律性,并且可能会发生意外的危险运动。本文提出了一个强化学习框架,该框架能够学习以平稳的开箱即用向现实的转移,仅需要瞬时的本体感受观察,可以学习强大的站立式恢复。通过结合原始的终止条件和政策平滑度调节,我们使用没有记忆力或观察历史的政策实现了稳定的学习,SIM转移和安全性。然后使用奖励成型来提供有关如何保持平衡的见解。我们展示了其在下LIMB医学外骨骼Atalante中的现实表现。
translated by 谷歌翻译
学习灵巧的操纵技巧是计算机图形和机器人技术的长期挑战,尤其是当任务涉及手,工具和物体之间的复杂而微妙的互动时。在本文中,我们专注于基于筷子的对象搬迁任务,这些任务很常见却又要求。成功的筷子技巧的关键是稳定地抓住棍棒,这也支持精致的演习。我们会自动发现贝叶斯优化(BO)和深钢筋学习(DRL)的身体有效的筷子姿势,它适用于多种握把的样式和手工形态,而无需示例数据。作为输入,我们要移动发现的抓紧姿势和所需的对象,我们构建了基于物理的手部控制器,以在两个阶段完成重定位任务。首先,运动轨迹是为筷子合成的,并处于运动计划阶段。我们运动策划者的关键组件包括一个握把模型,以选择用于抓住对象的合适筷子配置,以及一个轨迹优化模块,以生成无碰撞的筷子轨迹。然后,我们再次通过DRL训练基于物理的手部控制器,以跟踪运动计划者产生的所需运动轨迹。我们通过重新定位各种形状和尺寸的对象,以多种诱人的样式和多种手工形态的位置来展示框架的功能。与试图学习基于筷子的技能的香草系统相比,我们的系统实现了更快的学习速度和更好的控制鲁棒性,而无需抓紧姿势优化模块和/或没有运动学运动计划者。
translated by 谷歌翻译
基于腿部机器人的基于深的加固学习(RL)控制器表现出令人印象深刻的鲁棒性,可在不同的环境中为多个机器人平台行走。为了在现实世界中启用RL策略为类人类机器人应用,至关重要的是,建立一个可以在2D和3D地形上实现任何方向行走的系统,并由用户命令控制。在本文中,我们通过学习遵循给定步骤序列的政策来解决这个问题。该政策在一组程序生成的步骤序列(也称为脚步计划)的帮助下进行培训。我们表明,仅将即将到来的2个步骤喂入政策就足以实现全向步行,安装到位,站立和攀登楼梯。我们的方法采用课程学习对地形的复杂性,并规避了参考运动或预训练的权重的需求。我们证明了我们提出的方法在Mujoco仿真环境中学习2个新机器人平台的RL策略-HRP5P和JVRC -1-。可以在线获得培训和评估的代码。
translated by 谷歌翻译
Deep Reinforcement Learning has been successfully applied to learn robotic control. However, the corresponding algorithms struggle when applied to problems where the agent is only rewarded after achieving a complex task. In this context, using demonstrations can significantly speed up the learning process, but demonstrations can be costly to acquire. In this paper, we propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration. To do so, our method learns a goal-conditioned policy to control a system between successive low-dimensional goals. This sequential goal-reaching approach raises a problem of compatibility between successive goals: we need to ensure that the state resulting from reaching a goal is compatible with the achievement of the following goals. To tackle this problem, we present a new algorithm called DCIL-II. We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up as well as fast running with a simulated Cassie robot. Our method leveraging sequentiality is a step towards the resolution of complex robotic tasks under minimal specification effort, a key feature for the next generation of autonomous robots.
translated by 谷歌翻译
对象重排是将对象从初始状态移动到目标状态。在这里,我们专注于对象重排的更实际设置,即从洗牌布局到不明确目标规范的规范目标分布的重新安排对象。但是,对于AI代理商而言,它仍然具有挑战性,因为很难描述奖励工程或收集专家轨迹作为示范的目标分布(目标规范)。因此,直接采用强化学习或模仿学习算法来解决任务是不可行的。本文旨在仅使用目标分布而不是手工奖励功能的一组示例来搜索策略。我们采用分数匹配目标来训练目标梯度场(TARGF),指示每个对象的方向增加目标分布的可能性。对于对象重新安排,可以通过两种方式使用TARGF:1)对于基于模型的计划,我们可以将目标梯度投入使用分布式路径计划者的参考控制和输出操作; 2)对于无模型的增强学习,TARGF不仅用于估计可能性变化作为奖励,而且还提供了剩余政策学习中建议的行动。球重排和房间重排的实验结果表明,我们的方法在终端状态的质量,控制过程的效率和可扩展性方面显着优于最先进的方法。代码和演示视频在我们的项目网站上。
translated by 谷歌翻译
强化学习方法作为一种有前途的技术在自由浮动太空机器人的运动计划中取得了卓越的成果。但是,由于计划维度的增加和系统动态耦合的加剧,双臂自由浮动太空机器人的运动计划仍然是一个开放的挑战。特别是,由于缺乏最终效果的姿势约束,当前的研究无法处理捕获非合作对象的任务。为了解决该问题,我们提出了一种新型算法,即有效的算法,以促进基于RL的方法有效提高计划准确性。我们的核心贡献是通过先验知识指导构建一项混合政策,并引入无限规范以构建更合理的奖励功能。此外,我们的方法成功地捕获了具有不同旋转速度的旋转对象。
translated by 谷歌翻译
深度强化学习是在不需要领域知识的不受控制环境中学习政策的有前途的方法。不幸的是,由于样本效率低下,深度RL应用主要集中在模拟环境上。在这项工作中,我们证明了机器学习算法和库的最新进步与精心调整的机器人控制器相结合,导致在现实世界中仅20分钟内学习四倍的运动。我们在几个室内和室外地形上评估了我们的方法,这些室内和室外地形对基于古典模型的控制器来说是具有挑战性的。我们观察机器人能够在所有这些地形上始终如一地学习步态。最后,我们在模拟环境中评估我们的设计决策。
translated by 谷歌翻译
由于涉及的复杂动态和多标准优化,控制非静态双模型机器人具有挑战性。最近的作品已经证明了深度加强学习(DRL)的仿真和物理机器人的有效性。在这些方法中,通常总共总共汇总来自不同标准的奖励以学习单个值函数。但是,这可能导致混合奖励之间的依赖信息丢失并导致次优策略。在这项工作中,我们提出了一种新颖的奖励自适应加强学习,用于Biped运动,允许控制策略通过使用动态机制通过多标准同时优化。该方法应用多重批评,为每个奖励组件学习单独的值函数。这导致混合政策梯度。我们进一步提出了动态权重,允许每个组件以不同的优先级优化策略。这种混合动态和动态策略梯度(HDPG)设计使代理商更有效地学习。我们表明所提出的方法优于总结奖励方法,能够转移到物理机器人。 SIM-to-Real和Mujoco结果进一步证明了HDPG的有效性和泛化。
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译
Reinforcement learning holds the promise of enabling autonomous robots to learn large repertoires of behavioral skills with minimal human intervention. However, robotic applications of reinforcement learning often compromise the autonomy of the learning process in favor of achieving training times that are practical for real physical systems. This typically involves introducing hand-engineered policy representations and human-supplied demonstrations. Deep reinforcement learning alleviates this limitation by training general-purpose neural network policies, but applications of direct deep reinforcement learning algorithms have so far been restricted to simulated settings and relatively simple tasks, due to their apparent high sample complexity. In this paper, we demonstrate that a recent deep reinforcement learning algorithm based on offpolicy training of deep Q-functions can scale to complex 3D manipulation tasks and can learn deep neural network policies efficiently enough to train on real physical robots. We demonstrate that the training times can be further reduced by parallelizing the algorithm across multiple robots which pool their policy updates asynchronously. Our experimental evaluation shows that our method can learn a variety of 3D manipulation skills in simulation and a complex door opening skill on real robots without any prior demonstrations or manually designed representations.
translated by 谷歌翻译
实现人类水平的灵活性是机器人技术中的重要开放问题。但是,即使在婴儿级别,灵巧的手动操纵任务也是通过增强学习(RL)的挑战。困难在于高度的自由度和异质因素(例如手指关节)之间所需的合作。在这项研究中,我们提出了双人灵感手基准(BI-DEXHANDS),这是一种模拟器,涉及两只灵巧的手,其中包含数十只双人操纵任务和数千个目标对象。具体而言,根据认知科学文献,BI-DEXHANDS中的任务旨在匹配不同级别的人类运动技能。我们在ISSAC体育馆里建造了Bi-Dexhands;这可以实现高效的RL培训,仅在一个NVIDIA RTX 3090中达到30,000+ fps。我们在不同的设置下为流行的RL算法提供了全面的基准;这包括单代理/多代理RL,离线RL,多任务RL和META RL。我们的结果表明,PPO类型的上车算法可以掌握简单的操纵任务,该任务等效到48个月的人类婴儿(例如,捕获飞行的物体,打开瓶子),而多代理RL可以进一步帮助掌握掌握需要熟练的双人合作的操作(例如,举起锅,堆叠块)。尽管每个任务都取得了成功,但在获得多个操纵技能方面,现有的RL算法无法在大多数多任务和少量学习设置中工作,这需要从RL社区进行更实质性的发展。我们的项目通过https://github.com/pku-marl/dexteroushands开放。
translated by 谷歌翻译
我们为物理模拟字符进行了简单而直观的互动控制方法。我们的工作在生成的对抗网络(GAN)和加强学习时构建,并介绍了一个模仿学习框架,其中分类器的集合和仿制策略训练在给定预处理的参考剪辑中训练。分类器受过培训,以区分从模仿政策产生的运动中的参考运动,而策略是为了欺骗歧视者而获得奖励。使用我们的GaN的方法,可以单独培训多个电机控制策略以模仿不同的行为。在运行时,我们的系统可以响应用户提供的外部控制信号,并在不同策略之间交互式切换。与现有方法相比,我们所提出的方法具有以下有吸引力的特性:1)在不手动设计和微调奖励功能的情况下实现最先进的模仿性能; 2)直接控制字符,而无需明确地或隐含地通过相位状态跟踪任何目标参考姿势; 3)支持交互式策略切换,而无需任何运动生成或运动匹配机制。我们突出了我们在一系列模仿和互动控制任务中的方法的适用性,同时还证明了其抵御外部扰动以及恢复平衡的能力。总的来说,我们的方法产生高保真运动,运行时的运行时间低,并且可以轻松地集成到交互式应用程序和游戏中。
translated by 谷歌翻译
在这项工作中,我们提出了一种方法,用于生成降低的模型参考轨迹,用于用于双皮亚机器人的高度动态操作的一般类别,用于SIM卡之间,用于SIM卡至现实的增强学习。我们的方法是利用单个刚体模型(SRBM)来优化轨迹的库库,以用作学习政策的奖励函数中的专家参考。该方法将模型的动态旋转和翻译行为转化为全阶机器人模型,并成功将其传输到真实硬件。 SRBM的简单性允许快速迭代和行为改进,而基于学习的控制器的鲁棒性则可以将高度动态的动作传输到硬件。 %在这项工作中,我们介绍了一套可转移性约束,将SRBM动态修改为实际的两足机器人硬件,这是我们为动态步进,转动操作和跳跃创建最佳轨迹的框架。在这项工作中,我们介绍了一套可转移性约束,将SRBM动力学修改为实际的双皮亚机器人硬件,我们为各种高度动态的操作创建最佳轨迹的框架,以及我们整合参考轨迹的高速强化跑步轨迹的方法学习政策。我们验证了在两足机器人Cassie上的方法,我们成功地展示了高达3.0 m/s的高度动态接地步态。
translated by 谷歌翻译
将四型人降落在倾斜的表面上是一个具有挑战性的动作。任何倾斜着陆轨迹的最终状态都不是平衡,这排除了大多数常规控制方法的使用。我们提出了一种深入的强化学习方法,以设计倾斜表面的自动着陆控制器。使用具有稀疏奖励和量身定制的课程学习方法的近端政策优化(PPO)算法,可以在不到90分钟的标准笔记本电脑上培训倾斜的着陆政策。然后,该政策直接采用真正的Crazyflie 2.1四型四面管,并成功地在飞行舞台上执行了真正的倾向着陆。单个策略评估大约需要2.5 \,MS,这使其适用于四型在四面体上的未来嵌入式实现。
translated by 谷歌翻译