在最近的联邦学习研究中,使用大批量提高了收敛率,但是与使用小批量相比,它需要额外的计算开销。为了克服这一限制,我们提出了一个统一的框架,该框架基于时间变化的概率将参与者分为锚和矿工组。锚点组中的每个客户都使用大批量计算梯度,该梯度被视为其靶心。矿工组中的客户使用串行迷你批次执行多个本地更新,并且每个本地更新也受到客户平均值Bullseyes的平均值的全局目标的间接调节。结果,矿工组遵循了对全球最小化器的近乎最佳更新,该更新适合更新全局模型。通过$ \ epsilon $ - Approximation衡量,FedAmd通过以恒定概率对锚点进行采样锚点,在非convex目标下达到了$ o(1/\ epsilon)$的收敛速率。理论上的结果大大超过了最先进的算法BVR-l-SGD $ O(1/\ Epsilon^{3/2})$,而FedAmd至少减少了$ O(1/\ Epsilon)$沟通开销。关于现实世界数据集的实证研究验证了FedAmd的有效性,并证明了我们提出的算法的优势。
translated by 谷歌翻译
在联合优化的设置中,在周期性地聚合全局模型的情况下,当参与者通过完全利用其计算资源进行模型训练时,将发生步骤异步。很好地承认,在非i.i.d下,STEP异步导致客观不一致。数据,降低了模型精度。为了解决这个问题,我们提出了一种新的算法\ texttt {fedagrac},它将本地方向校准到预测的全球方向。采取估计取向的优势,我们保证,聚合模型不会过度偏离预期的方向,同时充分利用更快的节点的本地更新。理论上,我们证明\ texttt {fedagrac}保持比最先进的方法的收敛速度提高,并消除了步骤异步的负效应。经验结果表明,我们的算法加速了培训并增强了最终的准确性。
translated by 谷歌翻译
To lower the communication complexity of federated min-max learning, a natural approach is to utilize the idea of infrequent communications (through multiple local updates) same as in conventional federated learning. However, due to the more complicated inter-outer problem structure in federated min-max learning, theoretical understandings of communication complexity for federated min-max learning with infrequent communications remain very limited in the literature. This is particularly true for settings with non-i.i.d. datasets and partial client participation. To address this challenge, in this paper, we propose a new algorithmic framework called stochastic sampling averaging gradient descent ascent (SAGDA), which i) assembles stochastic gradient estimators from randomly sampled clients as control variates and ii) leverages two learning rates on both server and client sides. We show that SAGDA achieves a linear speedup in terms of both the number of clients and local update steps, which yields an $\mathcal{O}(\epsilon^{-2})$ communication complexity that is orders of magnitude lower than the state of the art. Interestingly, by noting that the standard federated stochastic gradient descent ascent (FSGDA) is in fact a control-variate-free special version of SAGDA, we immediately arrive at an $\mathcal{O}(\epsilon^{-2})$ communication complexity result for FSGDA. Therefore, through the lens of SAGDA, we also advance the current understanding on communication complexity of the standard FSGDA method for federated min-max learning.
translated by 谷歌翻译
A key assumption in most existing works on FL algorithms' convergence analysis is that the noise in stochastic first-order information has a finite variance. Although this assumption covers all light-tailed (i.e., sub-exponential) and some heavy-tailed noise distributions (e.g., log-normal, Weibull, and some Pareto distributions), it fails for many fat-tailed noise distributions (i.e., ``heavier-tailed'' with potentially infinite variance) that have been empirically observed in the FL literature. To date, it remains unclear whether one can design convergent algorithms for FL systems that experience fat-tailed noise. This motivates us to fill this gap in this paper by proposing an algorithmic framework called FAT-Clipping (\ul{f}ederated \ul{a}veraging with \ul{t}wo-sided learning rates and \ul{clipping}), which contains two variants: FAT-Clipping per-round (FAT-Clipping-PR) and FAT-Clipping per-iteration (FAT-Clipping-PI). Specifically, for the largest $\alpha \in (1,2]$ such that the fat-tailed noise in FL still has a bounded $\alpha$-moment, we show that both variants achieve $\mathcal{O}((mT)^{\frac{2-\alpha}{\alpha}})$ and $\mathcal{O}((mT)^{\frac{1-\alpha}{3\alpha-2}})$ convergence rates in the strongly-convex and general non-convex settings, respectively, where $m$ and $T$ are the numbers of clients and communication rounds. Moreover, at the expense of more clipping operations compared to FAT-Clipping-PR, FAT-Clipping-PI further enjoys a linear speedup effect with respect to the number of local updates at each client and being lower-bound-matching (i.e., order-optimal). Collectively, our results advance the understanding of designing efficient algorithms for FL systems that exhibit fat-tailed first-order oracle information.
translated by 谷歌翻译
数据异构联合学习(FL)系统遭受了两个重要的收敛误差来源:1)客户漂移错误是由于在客户端执行多个局部优化步骤而引起的,以及2)部分客户参与错误,这是一个事实,仅一小部分子集边缘客户参加每轮培训。我们发现其中,只有前者在文献中受到了极大的关注。为了解决这个问题,我们提出了FedVarp,这是在服务器上应用的一种新颖的差异算法,它消除了由于部分客户参与而导致的错误。为此,服务器只是将每个客户端的最新更新保持在内存中,并将其用作每回合中非参与客户的替代更新。此外,为了减轻服务器上的内存需求,我们提出了一种新颖的基于聚类的方差降低算法clusterfedvarp。与以前提出的方法不同,FedVarp和ClusterFedVarp均不需要在客户端上进行其他计算或其他优化参数的通信。通过广泛的实验,我们表明FedVarp优于最先进的方法,而ClusterFedVarp实现了与FedVarp相当的性能,并且记忆要求较少。
translated by 谷歌翻译
在这项工作中,我们提出了FedSSO,这是一种用于联合学习的服务器端二阶优化方法(FL)。与以前朝这个方向的工作相反,我们在准牛顿方法中采用了服务器端近似,而无需客户的任何培训数据。通过这种方式,我们不仅将计算负担从客户端转移到服务器,而且还消除了客户和服务器之间二阶更新的附加通信。我们为我们的新方法的收敛提供了理论保证,并从经验上证明了我们在凸面和非凸面设置中的快速收敛和沟通节省。
translated by 谷歌翻译
In federated optimization, heterogeneity in the clients' local datasets and computation speeds results in large variations in the number of local updates performed by each client in each communication round. Naive weighted aggregation of such models causes objective inconsistency, that is, the global model converges to a stationary point of a mismatched objective function which can be arbitrarily different from the true objective. This paper provides a general framework to analyze the convergence of federated heterogeneous optimization algorithms. It subsumes previously proposed methods such as FedAvg and FedProx and provides the first principled understanding of the solution bias and the convergence slowdown due to objective inconsistency. Using insights from this analysis, we propose Fed-Nova, a normalized averaging method that eliminates objective inconsistency while preserving fast error convergence.
translated by 谷歌翻译
Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm.
translated by 谷歌翻译
从经验上证明,在跨客户聚集之前应用多个本地更新的实践是克服联合学习(FL)中的通信瓶颈的成功方法。在这项工作中,我们提出了一种通用食谱,即FedShuffle,可以更好地利用FL中的本地更新,尤其是在异质性方面。与许多先前的作品不同,FedShuffle在每个设备的更新数量上没有任何统一性。我们的FedShuffle食谱包括四种简单的功能成分:1)数据的本地改组,2)调整本地学习率,3)更新加权,4)减少动量方差(Cutkosky and Orabona,2019年)。我们对FedShuffle进行了全面的理论分析,并表明从理论和经验上讲,我们的方法都不遭受FL方法中存在的目标功能不匹配的障碍,这些方法假设在异质FL设置中,例如FedAvg(McMahan等人,McMahan等, 2017)。此外,通过将上面的成分结合起来,FedShuffle在Fednova上改善(Wang等,2020),以前提议解决此不匹配。我们还表明,在Hessian相似性假设下,通过降低动量方差的FedShuffle可以改善非本地方法。最后,通过对合成和现实世界数据集的实验,我们说明了FedShuffle中使用的四种成分中的每种如何有助于改善FL中局部更新的使用。
translated by 谷歌翻译
Federated learning (FL) is an effective technique to directly involve edge devices in machine learning training while preserving client privacy. However, the substantial communication overhead of FL makes training challenging when edge devices have limited network bandwidth. Existing work to optimize FL bandwidth overlooks downstream transmission and does not account for FL client sampling. In this paper we propose GlueFL, a framework that incorporates new client sampling and model compression algorithms to mitigate low download bandwidths of FL clients. GlueFL prioritizes recently used clients and bounds the number of changed positions in compression masks in each round. Across three popular FL datasets and three state-of-the-art strategies, GlueFL reduces downstream client bandwidth by 27% on average and reduces training time by 29% on average.
translated by 谷歌翻译
Federated learning is a distributed machine learning paradigm in which a large number of clients coordinate with a central server to learn a model without sharing their own training data. Standard federated optimization methods such as Federated Averaging (FEDAVG) are often difficult to tune and exhibit unfavorable convergence behavior. In non-federated settings, adaptive optimization methods have had notable success in combating such issues. In this work, we propose federated versions of adaptive optimizers, including ADAGRAD, ADAM, and YOGI, and analyze their convergence in the presence of heterogeneous data for general nonconvex settings. Our results highlight the interplay between client heterogeneity and communication efficiency. We also perform extensive experiments on these methods and show that the use of adaptive optimizers can significantly improve the performance of federated learning.
translated by 谷歌翻译
由于其在数据隐私保护,有效的沟通和并行数据处理方面的好处,联邦学习(FL)近年来引起了人们的兴趣。同样,采用适当的算法设计,可以实现fl中收敛效应的理想线性加速。但是,FL上的大多数现有作品仅限于I.I.D.的系统。数据和集中参数服务器以及与异质数据集分散的FL上的结果仍然有限。此外,在完全分散的FL下,与数据异质性在完全分散的FL下,可以实现收敛的线性加速仍然是一个悬而未决的问题。在本文中,我们通过提出一种称为Net-Fleet的新算法,以解决具有数据异质性的完全分散的FL系统,以解决这些挑战。我们算法的关键思想是通过合并递归梯度校正技术来处理异质数据集,以增强FL(最初旨在用于通信效率)的本地更新方案。我们表明,在适当的参数设置下,所提出的净型算法实现了收敛的线性加速。我们进一步进行了广泛的数值实验,以评估所提出的净化算法的性能并验证我们的理论发现。
translated by 谷歌翻译
联合学习(FL)是一种新兴学习范例,可以通过确保边缘设备上的客户端数据局部性来保护隐私。由于学习系统的多样性和异质性,FL的优化在实践中具有挑战性。尽管最近的研究努力改善异构数据的优化,但时间不断变化的异构数据在现实世界方案中的影响,例如改变客户数据或在训练期间留下或离开的间歇性客户,并未得到很好地研究。在这项工作中,我们提出了持续的联邦学习(CFL),灵活的框架,以捕获FL的时间不正常性。 CFL涵盖复杂和现实的情景 - 在之前的流派中评估了挑战 - 通过提取过去的本地数据集的信息并近似当地目标函数。从理论上讲,我们证明CFL方法在时间不断发展的场景中实现了比\ FEDAVG更快的会聚率,其中益处依赖于近似质量。在一系列实验中,我们表明数值调查结果与收敛分析相匹配,CFL方法显着优于其他SOTA FL基线。
translated by 谷歌翻译
虽然减少方差方法在解决大规模优化问题方面取得了巨大成功,但其中许多人遭受了累积错误,因此应定期需要进行完整的梯度计算。在本文中,我们提出了一种用于有限的和非convex优化的单环算法(梯度估计器的单环方法),该算法不需要定期刷新梯度估计器,但实现了几乎最佳的梯度复杂性。与现有方法不同,雪橇具有多功能性的优势。 (i)二阶最优性,(ii)PL区域中的指数收敛性,以及(iii)在较小的数据异质性下较小的复杂性。我们通过利用这些有利的特性来构建有效的联合学习算法。我们展示了输出的一阶和二阶最优性,并在PL条件下提供分析。当本地预算足够大,并且客户少(Hessian-)〜异质时,该算法需要较少的通信回合,而不是现有方法,例如FedAvg,脚手架和Mime。我们方法的优势在数值实验中得到了验证。
translated by 谷歌翻译
联合学习(FL)算法通常在每个圆数(部分参与)大并且服务器的通信带宽有限时对每个轮子(部分参与)进行分数。近期对FL的收敛分析的作品专注于无偏见的客户采样,例如,随机均匀地采样,由于高度的系统异质性和统计异质性而均匀地采样。本文旨在设计一种自适应客户采样算法,可以解决系统和统计异质性,以最小化壁时钟收敛时间。我们获得了具有任意客户端采样概率的流动算法的新的遗传融合。基于界限,我们分析了建立了总学习时间和采样概率之间的关系,这导致了用于训练时间最小化的非凸优化问题。我们设计一种高效的算法来学习收敛绑定中未知参数,并开发低复杂性算法以大致解决非凸面问题。硬件原型和仿真的实验结果表明,与几个基线采样方案相比,我们所提出的采样方案显着降低了收敛时间。值得注意的是,我们的硬件原型的方案比均匀的采样基线花费73%,以达到相同的目标损失。
translated by 谷歌翻译
在许多机器学习应用中,在许多移动或物联网设备上生成大规模和隐私敏感数据,在集中位置收集数据可能是禁止的。因此,在保持数据本地化的同时估计移动或物联网设备上的参数越来越吸引人。这种学习设置被称为交叉设备联合学习。在本文中,我们提出了第一理论上保证的跨装置联合学习设置中的一般Minimax问题的算法。我们的算法仅在每轮训练中只需要一小部分设备,这克服了设备的低可用性引入​​的困难。通过在与服务器通信之前对客户端执行多个本地更新步骤,并利用全局梯度估计来进一步减少通信开销,并利用全局梯度估计来校正由数据异质性引入的本地更新方向上的偏置。通过基于新型潜在功能的开发分析,我们为我们的算法建立了理论融合保障。 AUC最大化,强大的对抗网络培训和GAN培训任务的实验结果展示了我们算法的效率。
translated by 谷歌翻译
我们研究了在$ n $工人上的分布式培训的异步随机梯度下降算法,随着时间的推移,计算和通信频率变化。在此算法中,工人按照自己的步调并行计算随机梯度,并在没有任何同步的情况下将其返回服务器。该算法的现有收敛速率对于非凸平的光滑目标取决于最大梯度延迟$ \ tau _ {\ max} $,并表明$ \ epsilon $ stationary点在$ \ mathcal {o} \!\左后达到(\ sigma^2 \ epsilon^{ - 2}+ \ tau _ {\ max} \ epsilon^{ - 1} \ right)$ iterations,其中$ \ sigma $表示随机梯度的方差。在这项工作(i)中,我们获得了$ \ Mathcal {o} \!\ left(\ sigma^2 \ epsilon^{ - 2}+ sqrt {\ tau _ {\ max} \ max} \ tau_ {avg} {avg} } \ epsilon^{ - 1} \ right)$,没有任何更改的算法,其中$ \ tau_ {avg} $是平均延迟,可以大大小于$ \ tau _ {\ max} $。我们还提供(ii)一个简单的延迟自适应学习率方案,在该方案下,异步SGD的收敛速率为$ \ Mathcal {o} \!\ left(\ sigma^2 \ epsilon^{ - 2} { - 2}+ \ tau_ {-2 avg} \ epsilon^{ - 1} \ right)$,并且不需要任何额外的高参数调整或额外的通信。我们的结果首次显示异步SGD总是比迷你批次SGD快。此外,(iii)我们考虑了由联邦学习应用激发的异质功能的情况,并通过证明与先前的作品相比对最大延迟的依赖性较弱,并提高收敛率。特别是,我们表明,收敛率的异质性项仅受每个工人内平均延迟的影响。
translated by 谷歌翻译
Federated learning (FL) is a decentralized and privacy-preserving machine learning technique in which a group of clients collaborate with a server to learn a global model without sharing clients' data. One challenge associated with FL is statistical diversity among clients, which restricts the global model from delivering good performance on each client's task. To address this, we propose an algorithm for personalized FL (pFedMe) using Moreau envelopes as clients' regularized loss functions, which help decouple personalized model optimization from the global model learning in a bi-level problem stylized for personalized FL. Theoretically, we show that pFedMe's convergence rate is state-of-the-art: achieving quadratic speedup for strongly convex and sublinear speedup of order 2/3 for smooth nonconvex objectives. Experimentally, we verify that pFedMe excels at empirical performance compared with the vanilla FedAvg and Per-FedAvg, a meta-learning based personalized FL algorithm.
translated by 谷歌翻译
Federated learning has attracted increasing attention with the emergence of distributed data. While extensive federated learning algorithms have been proposed for the non-convex distributed problem, the federated learning in practice still faces numerous challenges, such as the large training iterations to converge since the sizes of models and datasets keep increasing, and the lack of adaptivity by SGD-based model updates. Meanwhile, the study of adaptive methods in federated learning is scarce and existing works either lack a complete theoretical convergence guarantee or have slow sample complexity. In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on the momentum-based variance reduced technique in cross-silo FL. We first explore how to design the adaptive algorithm in the FL setting. By providing a counter-example, we prove that a simple combination of FL and adaptive methods could lead to divergence. More importantly, we provide a convergence analysis for our method and prove that our algorithm is the first adaptive FL algorithm to reach the best-known samples $O(\epsilon^{-3})$ and $O(\epsilon^{-2})$ communication rounds to find an $\epsilon$-stationary point without large batches. The experimental results on the language modeling task and image classification task with heterogeneous data demonstrate the efficiency of our algorithms.
translated by 谷歌翻译
众所周知,客户师沟通可能是联邦学习中的主要瓶颈。在这项工作中,我们通过一种新颖的客户端采样方案解决了这个问题,我们将允许的客户数量限制为将其更新传达给主节点的数量。在每个通信回合中,所有参与的客户都会计算他们的更新,但只有具有“重要”更新的客户可以与主人通信。我们表明,可以仅使用更新的规范来衡量重要性,并提供一个公式以最佳客户参与。此公式将所有客户参与的完整更新与我们有限的更新(参与客户数量受到限制)之间的距离最小化。此外,我们提供了一种简单的算法,该算法近似于客户参与的最佳公式,该公式仅需要安全的聚合,因此不会损害客户的隐私。我们在理论上和经验上都表明,对于分布式SGD(DSGD)和联合平均(FedAvg),我们的方法的性能可以接近完全参与,并且优于基线,在参与客户均匀地采样的基线。此外,我们的方法与现有的减少通信开销(例如本地方法和通信压缩方法)的现有方法兼容。
translated by 谷歌翻译