尽管深入的强化学习(DRL)在包括机器人技术在内的许多学科中都很流行,但最先进的DRL算法仍然难以学习长途,多步骤和稀疏奖励任务,例如仅在只有一项任务的情况下堆叠几个块 - 集合奖励信号。为了提高此类任务的学习效率,本文提出了一种称为A^2的DRL探索技术,该技术集成了受人类经验启发的两个组成部分:抽象演示和适应性探索。 A^2首先将复杂的任务分解为子任务,然后提供正确的子任务订单以学习。在训练过程中,该代理商会自适应地探索环境,对良好的子任务的行为更确定性,并且更随机地对不良的子任务子任务。消融和比较实验是对几个网格世界任务和三个机器人操纵任务进行的。我们证明A^2可以帮助流行的DRL算法(DQN,DDPG和SAC)在这些环境中更有效,稳定地学习。
translated by 谷歌翻译
Exploration in environments with sparse rewards has been a persistent problem in reinforcement learning (RL). Many tasks are natural to specify with a sparse reward, and manually shaping a reward function can result in suboptimal performance. However, finding a non-zero reward is exponentially more difficult with increasing task horizon or action dimensionality. This puts many real-world tasks out of practical reach of RL methods. In this work, we use demonstrations to overcome the exploration problem and successfully learn to perform long-horizon, multi-step robotics tasks with continuous control such as stacking blocks with a robot arm. Our method, which builds on top of Deep Deterministic Policy Gradients and Hindsight Experience Replay, provides an order of magnitude of speedup over RL on simulated robotics tasks. It is simple to implement and makes only the additional assumption that we can collect a small set of demonstrations. Furthermore, our method is able to solve tasks not solvable by either RL or behavior cloning alone, and often ends up outperforming the demonstrator policy.
translated by 谷歌翻译
深度加固学习(DRL)使机器人能够结束结束地执行一些智能任务。然而,长地平线稀疏奖励机器人机械手任务仍存在许多挑战。一方面,稀疏奖励设置会导致探索效率低下。另一方面,使用物理机器人的探索是高成本和不安全的。在本文中,我们提出了一种学习使用本文中名为基础控制器的一个或多个现有传统控制器的长地平线稀疏奖励任务。基于深度确定性的政策梯度(DDPG),我们的算法将现有基础控制器融入勘探,价值学习和策略更新的阶段。此外,我们介绍了合成不同基础控制器以整合它们的优点的直接方式。通过从堆叠块到杯子的实验,证明学习的国家或基于图像的策略稳定优于基础控制器。与以前的示范中的学习作品相比,我们的方法通过数量级提高了样品效率,提高了性能。总体而言,我们的方法具有利用现有的工业机器人操纵系统来构建更灵活和智能控制器的可能性。
translated by 谷歌翻译
通过加强学习(RL)掌握机器人操纵技巧通常需要设计奖励功能。该地区的最新进展表明,使用稀疏奖励,即仅在成功完成任务时奖励代理,可能会导致更好的政策。但是,在这种情况下,国家行动空间探索更困难。最近的RL与稀疏奖励学习的方法已经为任务提供了高质量的人类演示,但这些可能是昂贵的,耗时甚至不可能获得的。在本文中,我们提出了一种不需要人类示范的新颖有效方法。我们观察到,每个机器人操纵任务都可以被视为涉及从被操纵对象的角度来看运动的任务,即,对象可以了解如何自己达到目标状态。为了利用这个想法,我们介绍了一个框架,最初使用现实物理模拟器获得对象运动策略。然后,此策略用于生成辅助奖励,称为模拟的机器人演示奖励(SLDRS),使我们能够学习机器人操纵策略。拟议的方法已在增加复杂性的13个任务中进行了评估,与替代算法相比,可以实现更高的成功率和更快的学习率。 SLDRS对多对象堆叠和非刚性物体操作等任务特别有益。
translated by 谷歌翻译
Dealing with sparse rewards is one of the biggest challenges in Reinforcement Learning (RL). We present a novel technique called Hindsight Experience Replay which allows sample-efficient learning from rewards which are sparse and binary and therefore avoid the need for complicated reward engineering. It can be combined with an arbitrary off-policy RL algorithm and may be seen as a form of implicit curriculum. We demonstrate our approach on the task of manipulating objects with a robotic arm. In particular, we run experiments on three different tasks: pushing, sliding, and pick-and-place, in each case using only binary rewards indicating whether or not the task is completed. Our ablation studies show that Hindsight Experience Replay is a crucial ingredient which makes training possible in these challenging environments. We show that our policies trained on a physics simulation can be deployed on a physical robot and successfully complete the task. The video presenting our experiments is available at https://goo.gl/SMrQnI.
translated by 谷歌翻译
通过稀疏奖励的环境中的深度加强学习学习机器人操纵是一项具有挑战性的任务。在本文中,我们通过引入虚构对象目标的概念来解决这个问题。对于给定的操纵任务,首先通过物理逼真的模拟训练感兴趣的对象以达到自己的目标位置,而不会被操纵。然后利用对象策略来构建可编征物体轨迹的预测模型,该轨迹提供具有逐步更加困难的对象目标的机器人来达到训练期间的课程。所提出的算法,遵循对象(FO),已经在需要增加探索程度的7个Mujoco环境中进行评估,并且与替代算法相比,取得了更高的成功率。在特别具有挑战性的学习场景中,例如当物体的初始和目标位置相隔甚远,我们的方法仍然可以学习政策,而竞争方法目前失败。
translated by 谷歌翻译
In order to avoid conventional controlling methods which created obstacles due to the complexity of systems and intense demand on data density, developing modern and more efficient control methods are required. In this way, reinforcement learning off-policy and model-free algorithms help to avoid working with complex models. In terms of speed and accuracy, they become prominent methods because the algorithms use their past experience to learn the optimal policies. In this study, three reinforcement learning algorithms; DDPG, TD3 and SAC have been used to train Fetch robotic manipulator for four different tasks in MuJoCo simulation environment. All of these algorithms are off-policy and able to achieve their desired target by optimizing both policy and value functions. In the current study, the efficiency and the speed of these three algorithms are analyzed in a controlled environment.
translated by 谷歌翻译
长期的Horizo​​n机器人学习任务稀疏的奖励对当前的强化学习算法构成了重大挑战。使人类能够学习挑战的控制任务的关键功能是,他们经常获得专家干预,使他们能够在掌握低级控制动作之前了解任务的高级结构。我们为利用专家干预来解决长马增强学习任务的框架。我们考虑\ emph {选项模板},这是编码可以使用强化学习训练的潜在选项的规格。我们将专家干预提出,因为允许代理商在学习实施之前执行选项模板。这使他们能够使用选项,然后才能为学习成本昂贵的资源学习。我们在三个具有挑战性的强化学习问题上评估了我们的方法,这表明它的表现要优于最先进的方法。训练有素的代理商和我们的代码视频可以在以下网址找到:https://sites.google.com/view/stickymittens
translated by 谷歌翻译
在现实世界中学习机器人任务仍然是高度挑战性的,有效的实用解决方案仍有待发现。在该领域使用的传统方法是模仿学习和强化学习,但是当应用于真正的机器人时,它们都有局限性。将强化学习与预先收集的演示结合在一起是一种有前途的方法,可以帮助学习控制机器人任务的控制政策。在本文中,我们提出了一种使用新技术来利用离线和在线培训来利用离线专家数据的算法,以获得更快的收敛性和提高性能。拟议的算法(AWET)用新颖的代理优势权重对批评损失进行了加权,以改善专家数据。此外,AWET利用自动的早期终止技术来停止和丢弃与专家轨迹不同的策略推出 - 以防止脱离专家数据。在一项消融研究中,与在四个标准机器人任务上的最新基线相比,AWET表现出改善和有希望的表现。
translated by 谷歌翻译
Deep Reinforcement Learning has been successfully applied to learn robotic control. However, the corresponding algorithms struggle when applied to problems where the agent is only rewarded after achieving a complex task. In this context, using demonstrations can significantly speed up the learning process, but demonstrations can be costly to acquire. In this paper, we propose to leverage a sequential bias to learn control policies for complex robotic tasks using a single demonstration. To do so, our method learns a goal-conditioned policy to control a system between successive low-dimensional goals. This sequential goal-reaching approach raises a problem of compatibility between successive goals: we need to ensure that the state resulting from reaching a goal is compatible with the achievement of the following goals. To tackle this problem, we present a new algorithm called DCIL-II. We show that DCIL-II can solve with unprecedented sample efficiency some challenging simulated tasks such as humanoid locomotion and stand-up as well as fast running with a simulated Cassie robot. Our method leveraging sequentiality is a step towards the resolution of complex robotic tasks under minimal specification effort, a key feature for the next generation of autonomous robots.
translated by 谷歌翻译
事实证明,在强化学习中使用人类示范可以显着提高剂性能。但是,任何要求人手动“教”该模型的要求与强化学习的目标有些相反。本文试图通过使用通过简单使用的虚拟现实模拟收集的单个人类示例来帮助进行RL培训,以最大程度地减少人类参与学习过程的参与,同时仍保留了绩效优势。我们的方法增加了一次演示,以产生许多类似人类的演示,与深层确定性的政策梯度和事后的经验重播(DDPG + HER)相结合时,可以显着改善对简单任务的训练时间,并允许代理商解决复杂的任务(Block Block堆叠)DDPG +她一个人无法解决。该模型使用单个人类示例实现了这一重要的训练优势,需要少于一分钟的人类输入。
translated by 谷歌翻译
生成的对抗性模仿学习(GAIL)可以学习政策,而无需明确定义示威活动的奖励功能。盖尔有可能学习具有高维观测值的政策,例如图像。通过将Gail应用于真正的机器人,也许可以为清洗,折叠衣服,烹饪和清洁等日常活动获得机器人政策。但是,由于错误,人类示范数据通常是不完美的,这会降低由此产生的政策的表现。我们通过关注以下功能来解决此问题:1)许多机器人任务是目标任务,而2)在演示数据中标记此类目标状态相对容易。考虑到这些,本文提出了目标感知的生成对抗性模仿学习(GA-GAIL),该学习通过引入第二个歧视者来训练政策,以与指示演示数据的第一个歧视者并行区分目标状态。这扩展了一个标准的盖尔框架,即使通过促进实现目标状态的目标状态歧视者,甚至可以从不完美的演示中学习理想的政策。此外,GA-GAIL采用熵最大化的深层P-NETWORK(EDPN)作为发电机,该发电机考虑了策略更新中的平滑度和因果熵,以从两个歧视者中获得稳定的政策学习。我们提出的方法成功地应用于两项真正的布料操作任务:将手帕翻过来折叠衣服。我们确认它在没有特定特定任务奖励功能设计的情况下学习了布料操作政策。实际实验的视频可在https://youtu.be/h_nii2ooure上获得。
translated by 谷歌翻译
Hierarchical Reinforcement Learning (HRL) algorithms have been demonstrated to perform well on high-dimensional decision making and robotic control tasks. However, because they solely optimize for rewards, the agent tends to search the same space redundantly. This problem reduces the speed of learning and achieved reward. In this work, we present an Off-Policy HRL algorithm that maximizes entropy for efficient exploration. The algorithm learns a temporally abstracted low-level policy and is able to explore broadly through the addition of entropy to the high-level. The novelty of this work is the theoretical motivation of adding entropy to the RL objective in the HRL setting. We empirically show that the entropy can be added to both levels if the Kullback-Leibler (KL) divergence between consecutive updates of the low-level policy is sufficiently small. We performed an ablative study to analyze the effects of entropy on hierarchy, in which adding entropy to high-level emerged as the most desirable configuration. Furthermore, a higher temperature in the low-level leads to Q-value overestimation and increases the stochasticity of the environment that the high-level operates on, making learning more challenging. Our method, SHIRO, surpasses state-of-the-art performance on a range of simulated robotic control benchmark tasks and requires minimal tuning.
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
Adversarial imitation learning (AIL) has become a popular alternative to supervised imitation learning that reduces the distribution shift suffered by the latter. However, AIL requires effective exploration during an online reinforcement learning phase. In this work, we show that the standard, naive approach to exploration can manifest as a suboptimal local maximum if a policy learned with AIL sufficiently matches the expert distribution without fully learning the desired task. This can be particularly catastrophic for manipulation tasks, where the difference between an expert and a non-expert state-action pair is often subtle. We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of multiple exploratory, auxiliary tasks in addition to a main task. The addition of these auxiliary tasks forces the agent to explore states and actions that standard AIL may learn to ignore. Additionally, this particular formulation allows for the reusability of expert data between main tasks. Our experimental results in a challenging multitask robotic manipulation domain indicate that LfGP significantly outperforms both AIL and behaviour cloning, while also being more expert sample efficient than these baselines. To explain this performance gap, we provide further analysis of a toy problem that highlights the coupling between a local maximum and poor exploration, and also visualize the differences between the learned models from AIL and LfGP.
translated by 谷歌翻译
近年来,深度加固学习(DRL)已经成功地进入了复杂的决策应用,例如机器人,自动驾驶或视频游戏。违规算法往往比其策略对应物更具样本效率,并且可以从存储在重放缓冲区中存储的任何违规数据中受益。专家演示是此类数据的流行来源:代理人接触到成功的国家和行动,可以加速学习过程并提高性能。在过去,已经提出了多种想法来充分利用缓冲区中的演示,例如仅在演示或最小化额外的成本函数的预先估算。我们继续进行研究,以孤立地评估这些想法中的几个想法,以了解哪一个具有最大的影响。我们还根据给予示范和成功集中的奖励奖金,为稀疏奖励任务提供了一种新的方法。首先,我们向来自示威活动的过渡提供奖励奖金,以鼓励代理商符合所证明的行为。然后,在收集成功的剧集时,我们将其在将其添加到重播缓冲区之前与相同的奖金转换,鼓励代理也与其先前的成功相匹配。我们的实验的基本算法是流行的软演员 - 评论家(SAC),用于连续动作空间的最先进的脱核算法。我们的实验专注于操纵机器人,特别是在模拟中的机器人手臂的3D到达任务。我们表明,我们的方法Sacr2根据奖励重新标记提高了此任务的性能,即使在没有示范的情况下也是如此。
translated by 谷歌翻译
稀疏奖励学习通常在加强学习(RL)方面效率低下。 Hindsight Experience重播(她)已显示出一种有效的解决方案,可以处理低样本效率,这是由于目标重新标记而导致的稀疏奖励效率。但是,她仍然有一个隐含的虚拟阳性稀疏奖励问题,这是由于实现目标而引起的,尤其是对于机器人操纵任务而言。为了解决这个问题,我们提出了一种新型的无模型连续RL算法,称为Relay-HER(RHER)。提出的方法首先分解并重新布置原始的长马任务,以增量复杂性为新的子任务。随后,多任务网络旨在以复杂性的上升顺序学习子任务。为了解决虚拟阳性的稀疏奖励问题,我们提出了一种随机混合的探索策略(RME),在该策略中,在复杂性较低的人的指导下,较高复杂性的子任务的实现目标很快就会改变。实验结果表明,在五个典型的机器人操纵任务中,与香草盖相比,RHER样品效率的显着提高,包括Push,Pickandplace,抽屉,插入物和InstaclePush。提出的RHER方法还应用于从头开始的物理机器人上的接触式推送任务,成功率仅使用250集达到10/10。
translated by 谷歌翻译
现实的操纵任务要求机器人与具有长时间运动动作序列的环境相互作用。尽管最近出现了深厚的强化学习方法,这是自动化操作行为的有希望的范式,但由于勘探负担,它们通常在长途任务中缺乏。这项工作介绍了操纵原始增强的强化学习(Maple),这是一个学习框架,可通过预定的行为原始库来增强标准强化学习算法。这些行为原始素是专门实现操纵目标(例如抓住和推动)的强大功能模块。为了使用这些异质原始素,我们制定了涉及原语的层次结构策略,并使用输入参数实例化执行。我们证明,枫树的表现优于基线方法,通过一系列模拟的操纵任务的大幅度。我们还量化了学习行为的组成结构,并突出了我们方法将策略转移到新任务变体和物理硬件的能力。视频和代码可从https://ut-aut-autin-rpl.github.io/maple获得
translated by 谷歌翻译
移动操作(MM)系统是在非结构化现实世界环境中扮演个人助理角色的理想候选者。除其他挑战外,MM需要有效协调机器人的实施例,以执行需要移动性和操纵的任务。强化学习(RL)的承诺是将机器人具有自适应行为,但是大多数方法都需要大量的数据来学习有用的控制策略。在这项工作中,我们研究了机器人可及先验在参与者批判性RL方法中的整合,以加速学习和获取任务的MM学习。也就是说,我们考虑了最佳基础位置的问题以及是否激活ARM达到6D目标的后续决定。为此,我们设计了一种新型的混合RL方法,该方法可以共同处理离散和连续的动作,从而诉诸Gumbel-Softmax重新聚集化。接下来,我们使用来自经典方法的操作机器人工作区中的数据训练可及性。随后,我们得出了增强的混合RL(BHYRL),这是一种通过将其建模为残留近似器的总和来学习Q功能的新型算法。每当需要学习新任务时,我们都可以转移我们学到的残差并了解特定于任务的Q功能的组成部分,从而从先前的行为中维护任务结构。此外,我们发现将目标政策与先前的策略正规化产生更多的表达行为。我们评估了我们在达到难度增加和提取任务的模拟方面的方法,并显示了Bhyrl在基线方法上的卓越性能。最后,我们用Bhyrl零转移了我们学到的6D提取政策,以归功于我们的MM机器人Tiago ++。有关更多详细信息和代码发布,请参阅我们的项目网站:irosalab.com/rlmmbp
translated by 谷歌翻译
本文介绍了一些最先进的加强学习算法的基准研究,用于解决两个模拟基于视觉的机器人问题。本研究中考虑的算法包括软演员 - 评论家(SAC),近端政策优化(PPO),内插政策梯度(IPG),以及与后敏感体验重播(她)的变体。将这些算法的性能与Pybullet的两个仿真环境进行比较,称为KukadiverseObjectenV和raceCarzedgymenv。这些环境中的状态观察以RGB图像的形式提供,并且动作空间是连续的,使得它们难以解决。建议许多策略提供在基本上单目标环境的这些问题上实施算法所需的中级后敏感目标。另外,提出了许多特征提取架构在学习过程中纳入空间和时间关注。通过严格的模拟实验,建立了这些组分实现的改进。据我们所知,这种基准测试的基础基础是基于视觉的机器人问题的基准研究,使其成为该领域的新贡献。
translated by 谷歌翻译