在这项工作中,我们提供了一种基本的统一收敛定理,用于得出一系列随机优化方法的预期和几乎确定的收敛结果。我们的统一定理仅需要验证几种代表性条件,并且不适合任何特定算法。作为直接应用,我们在更一般的设置下恢复了随机梯度方法(SGD)和随机改组(RR)的预期收敛结果。此外,我们为非滑动非convex优化问题的随机近端梯度方法(Prox-SGD)和基于随机模型的方法(SMM)建立了新的预期和几乎确定的收敛结果。这些应用程序表明,我们的统一定理为广泛的随机优化方法提供了插件类型的收敛分析和强大的收敛保证。
translated by 谷歌翻译
我们研究了具有有限和结构的平滑非凸化优化问题的随机重新洗脱(RR)方法。虽然该方法在诸如神经网络的训练之类的实践中广泛利用,但其会聚行为仅在几个有限的环境中被理解。在本文中,在众所周知的Kurdyka-LojasiewiCz(KL)不等式下,我们建立了具有适当递减步长尺寸的RR的强极限点收敛结果,即,RR产生的整个迭代序列是会聚并会聚到单个静止点几乎肯定的感觉。 In addition, we derive the corresponding rate of convergence, depending on the KL exponent and the suitably selected diminishing step sizes.当KL指数在$ [0,\ FRAC12] $以$ [0,\ FRAC12] $时,收敛率以$ \ mathcal {o}(t ^ { - 1})$的速率计算,以$ t $ counting迭代号。当KL指数属于$(\ FRAC12,1)$时,我们的派生收敛速率是FORM $ \ MATHCAL {O}(T ^ { - Q})$,$ Q \ IN(0,1)$取决于在KL指数上。基于标准的KL不等式的收敛分析框架仅适用于具有某种阶段性的算法。我们对基于KL不等式的步长尺寸减少的非下降RR方法进行了新的收敛性分析,这概括了标准KL框架。我们总结了我们在非正式分析框架中的主要步骤和核心思想,这些框架是独立的兴趣。作为本框架的直接应用,我们还建立了类似的强极限点收敛结果,为重组的近端点法。
translated by 谷歌翻译
非滑动优化在许多工程领域中找到了广泛的应用程序。在这项工作中,我们建议利用{随机坐标亚级别方法}(RCS)来求解非平滑凸凸和非平滑凸(非平滑弱弱凸)优化问题。在每次迭代中,RCS随机选择一个块坐标,而不是所有要更新的坐标。由实用应用激发,我们考虑了目标函数的{线性界限亚级别假设},这比Lipschitz的连续性假设要笼统得多。在这样的一般假设下,我们在凸和非凸病例中对RCS进行了彻底的收敛分析,并建立了预期的收敛速率和几乎确定的渐近收敛结果。为了得出这些收敛结果,我们建立了收敛的引理以及弱凸功能的全局度量超值属性与其莫罗膜的关系,它们是基本的和独立的利益。最后,我们进行了几项实验,以显示RC的优势比亚级别方法的优势。
translated by 谷歌翻译
We study stochastic monotone inclusion problems, which widely appear in machine learning applications, including robust regression and adversarial learning. We propose novel variants of stochastic Halpern iteration with recursive variance reduction. In the cocoercive -- and more generally Lipschitz-monotone -- setup, our algorithm attains $\epsilon$ norm of the operator with $\mathcal{O}(\frac{1}{\epsilon^3})$ stochastic operator evaluations, which significantly improves over state of the art $\mathcal{O}(\frac{1}{\epsilon^4})$ stochastic operator evaluations required for existing monotone inclusion solvers applied to the same problem classes. We further show how to couple one of the proposed variants of stochastic Halpern iteration with a scheduled restart scheme to solve stochastic monotone inclusion problems with ${\mathcal{O}}(\frac{\log(1/\epsilon)}{\epsilon^2})$ stochastic operator evaluations under additional sharpness or strong monotonicity assumptions.
translated by 谷歌翻译
随机多变最小化 - 最小化(SMM)是大多数变化最小化的经典原则的在线延伸,这包括采样I.I.D。来自固定数据分布的数据点,并最小化递归定义的主函数的主要替代。在本文中,我们引入了随机块大大化 - 最小化,其中替代品现在只能块多凸,在半径递减内的时间优化单个块。在SMM中的代理人放松标准的强大凸起要求,我们的框架在内提供了更广泛的适用性,包括在线CANDECOMP / PARAFAC(CP)字典学习,并且尤其是当问题尺寸大时产生更大的计算效率。我们对所提出的算法提供广泛的收敛性分析,我们在可能的数据流下派生,放松标准i.i.d。对数据样本的假设。我们表明,所提出的算法几乎肯定会收敛于速率$ O((\ log n)^ {1+ \ eps} / n ^ {1/2})$的约束下的非凸起物镜的静止点集合。实证丢失函数和$ O((\ log n)^ {1+ \ eps} / n ^ {1/4})$的预期丢失函数,其中$ n $表示处理的数据样本数。在一些额外的假设下,后一趋同率可以提高到$ o((\ log n)^ {1+ \ eps} / n ^ {1/2})$。我们的结果为一般马尔维亚数据设置提供了各种在线矩阵和张量分解算法的第一融合率界限。
translated by 谷歌翻译
在机器学习中,随机梯度下降(SGD)被广泛部署到使用具有同样复杂噪声模型的高度非凸目标的训练模型。不幸的是,SGD理论通常会做出限制性的假设,这些假设无法捕获实际问题的非跨性别,并且几乎完全忽略了实践中存在的复杂噪声模型。在这项工作中,我们在这一缺点上取得了长足的进步。首先,我们确定SGD的迭代将在几乎任意的非概念和噪声模型下全球收敛到固定点或分歧。在对文献中当前假设的非跨性别和噪声模型的共同行为的限制性稍微限制性的假设下,我们表明,即使迭代分歧,目标函数也无法分歧。由于我们的结果,可以将SGD应用于更大范围的随机优化问题,并在其全球收敛行为和稳定性上充满信心。
translated by 谷歌翻译
本文分析了双模的彼此优化随机算法框架。 Bilevel优化是一类表现出两级结构的问题,其目标是使具有变量的外目标函数最小化,该变量被限制为对(内部)优化问题的最佳解决方案。我们考虑内部问题的情况是不受约束的并且强烈凸起的情况,而外部问题受到约束并具有平滑的目标函数。我们提出了一种用于解决如此偏纤维问题的两次时间尺度随机近似(TTSA)算法。在算法中,使用较大步长的随机梯度更新用于内部问题,而具有较小步长的投影随机梯度更新用于外部问题。我们在各种设置下分析了TTSA算法的收敛速率:当外部问题强烈凸起(RESP。〜弱凸)时,TTSA算法查找$ \ MATHCAL {O}(k ^ { - 2/3})$ -Optimal(resp。〜$ \ mathcal {o}(k ^ {-2/5})$ - 静止)解决方案,其中$ k $是总迭代号。作为一个应用程序,我们表明,两个时间尺度的自然演员 - 批评批评近端策略优化算法可以被视为我们的TTSA框架的特殊情况。重要的是,与全球最优政策相比,自然演员批评算法显示以预期折扣奖励的差距,以$ \ mathcal {o}(k ^ { - 1/4})的速率收敛。
translated by 谷歌翻译
文献中随机梯度方法的绝大多数收敛速率分析集中在预期中的收敛性,而轨迹的几乎确定的收敛对于确保随机算法的任何实例化都会与概率相关。在这里,我们为随机梯度下降(SGD),随机重球(SHB)和随机Nesterov的加速梯度(SNAG)方法提供了几乎确定的收敛速率分析。我们首次显示,这些随机梯度方法在强凸功能上获得的几乎确定的收敛速率已任意接近其最佳收敛速率。对于非凸目标函数,我们不仅表明平方梯度规范的加权平均值几乎可以肯定地收敛到零,而且是算法的最后一次迭代。与文献中的大多数现有结果相反,我们进一步为弱凸平平滑功能的随机梯度方法提供了最后的几乎确定的收敛速率分析,而文献中的大多数现有结果仅提供了对迭代率的加权平均值的预期。
translated by 谷歌翻译
我们应用随机顺序二次编程(STOSQP)算法来求解受约束的非线性优化问题,在该问题是随机的,并且约束是确定性的。我们研究了一个完全随机的设置,其中每次迭代中只有一个样本可用于估计物镜的梯度和黑森州。我们允许stosqp选择一个随机架子$ \ bar {\ alpha} _t $适应性,使得$ \ beta_t \ leq \ leq \ bar {\ alpha} _t \ leq \ leq \ beta_t+beta_t+\ chi_t+\ chi_t $,wither = o(\ beta_t)$是预定的确定性序列。我们还允许STOSQP通过随机迭代求解器(例如,使用草图和项目方法)求解牛顿系统。而且我们不需要不精确的牛顿方向的近似误差即可消失。对于这个一般的STOSQP框架,我们建立了其最后一次迭代的渐近收敛速率,最差的案例迭代复杂性是副产品。我们执行统计推断。特别是,有了适当的衰减$ \ beta_t,\ chi_t $,我们表明:(i)STOSQP方案最多可以采用$ o(1/\ epsilon^4)$ iterations $ iterations $ iTerations以实现$ \ epsilon $ -Stationarity; (ii)几乎毫无疑问,$ \ |(x_t -x^\ star,\ lambda_t- \ lambda^\ star)\ | | = o(\ sqrt {\ beta_t \ log(1/\ beta_t)})+o(\ chi_t/\ beta_t)$,其中$(x_t,\ lambda_t)$是primal-dimal-dimal-dialal-dialal-dialal-dual stosqp itselmate; (iii)序列$ 1/\ sqrt {\ beta_t} \ cdot(x_t -x^\ star,\ lambda_t- \ lambda_t- \ lambda^\ star)$收敛到平均零高斯分布,具有非琐事的共价矩阵。此外,我们建立了$(x_t,\ lambda_t)$的Berry-Esseen,以定量地测量其分布功能的收敛性。我们还为协方差矩阵提供了实用的估计器,可以使用iTerates $ \ {(x_t,\ lambda_t)\} _ t $构建$(x^\ star,\ lambda^\ star)$的置信区间(x^\ star,\ lambda^\ star)$。我们的定理使用最可爱的测试集中的非线性问题验证。
translated by 谷歌翻译
我们提出了随机方差降低算法,以求解凸 - 凸座鞍点问题,单调变异不平等和单调夹杂物。我们的框架适用于Euclidean和Bregman设置中的外部,前向前后和前反向回复的方法。所有提出的方法都在与确定性的对应物相同的环境中收敛,并且它们要么匹配或改善了解决结构化的最低最大问题的最著名复杂性。我们的结果加强了变异不平等和最小化之间的差异之间的对应关系。我们还通过对矩阵游戏的数值评估来说明方法的改进。
translated by 谷歌翻译
The implicit stochastic gradient descent (ISGD), a proximal version of SGD, is gaining interest in the literature due to its stability over (explicit) SGD. In this paper, we conduct an in-depth analysis of the two modes of ISGD for smooth convex functions, namely proximal Robbins-Monro (proxRM) and proximal Poylak-Ruppert (proxPR) procedures, for their use in statistical inference on model parameters. Specifically, we derive nonasymptotic point estimation error bounds of both proxRM and proxPR iterates and their limiting distributions, and propose on-line estimators of their asymptotic covariance matrices that require only a single run of ISGD. The latter estimators are used to construct valid confidence intervals for the model parameters. Our analysis is free of the generalized linear model assumption that has limited the preceding analyses, and employs feasible procedures. Our on-line covariance matrix estimators appear to be the first of this kind in the ISGD literature.* Equal contribution 1 Kakao Entertainment Corp.
translated by 谷歌翻译
最近,随机梯度下降(SGD)及其变体已成为机器学习(ML)问题大规模优化的主要方法。已经提出了各种策略来调整步骤尺寸,从自适应步骤大小到启发式方法,以更改每次迭代中的步骤大小。此外,动力已被广泛用于ML任务以加速训练过程。然而,我们对它们的理论理解存在差距。在这项工作中,我们开始通过为一些启发式优化方法提供正式保证并提出改进的算法来缩小这一差距。首先,我们分析了凸面和非凸口设置的Adagrad(延迟Adagrad)步骤大小的广义版本,这表明这些步骤尺寸允许算法自动适应随机梯度的噪声水平。我们首次显示延迟Adagrad的足够条件,以确保梯度几乎融合到零。此外,我们对延迟的Adagrad及其在非凸面设置中的动量变体进行了高概率分析。其次,我们用指数级和余弦的步骤分析了SGD,在经验上取得了成功,但缺乏理论支持。我们在平滑和非凸的设置中为它们提供了最初的收敛保证,有或没有polyak-{\ l} ojasiewicz(pl)条件。我们还显示了它们在PL条件下适应噪声的良好特性。第三,我们研究动量方法的最后迭代。我们证明了SGD的最后一个迭代的凸设置中的第一个下限,并以恒定的动量。此外,我们研究了一类跟随基于领先的领导者的动量算法,并随着动量和收缩的更新而增加。我们表明,他们的最后一个迭代具有最佳的收敛性,用于无约束的凸随机优化问题。
translated by 谷歌翻译
我们分析了一个随机近似算法的决策依赖性问题,其中算法沿迭代序列演变的数据分布。此类问题的主要示例出现在表演预测及其多人游戏扩展中。我们表明,在温和的假设下,算法的平均迭代和溶液之间的偏差在渐近正常上,协方差很好地解除了梯度噪声和分布移位的影响。此外,在H \'Ajek和Le Cam的工作中,我们表明该算法的渐近性能是本地最小的最佳选择。
translated by 谷歌翻译
现代统计应用常常涉及最小化可能是非流动和/或非凸起的目标函数。本文侧重于广泛的Bregman-替代算法框架,包括本地线性近似,镜像下降,迭代阈值,DC编程以及许多其他实例。通过广义BREGMAN功能的重新发出使我们能够构建合适的误差测量并在可能高维度下建立非凸起和非凸起和非球形目标的全球收敛速率。对于稀疏的学习问题,在一些规律性条件下,所获得的估算器作为代理人的固定点,尽管不一定是局部最小化者,但享受可明确的统计保障,并且可以证明迭代顺序在所需的情况下接近统计事实准确地快速。本文还研究了如何通过仔细控制步骤和放松参数来设计基于适应性的动力的加速度而不假设凸性或平滑度。
translated by 谷歌翻译
在本文中,我们研究了平稳的随机多级组成优化问题,其中目标函数是$ T $函数的嵌套组成。我们假设通过随机的一阶Oracle访问函数及其渐变的噪声评估。为了解决这类问题,我们提出了两个使用移动平均随机估计的两种算法,并分析了它们对问题的$ \ epsilon $ -stationary的趋同。我们表明,第一算法,它是\ Cite {gharuswan20}的泛化到$ t $ letch案例,可以通过使用mini-实现$ \ mathcal {o}(1 / \ epsilon ^ 6)$的样本复杂性每次迭代中的样品批次。通过使用函数值的线性化随机估计修改该算法,我们将样本复杂性提高到$ \ mathcal {o}(1 / \ epsilon ^ 4)$。 {\ Color {Black}此修改不仅可以消除在每次迭代中具有迷你样本的要求,还使算法无参数和易于实现}。据我们所知,这是第一次为(UN)约束的多级设置设计的在线算法,在标准假设下获得平滑单级设置的相同样本复杂度(无偏见和界限第二矩)在随机第一阶Oracle上。
translated by 谷歌翻译
由于其吸引人的稳健性以及可提供的效率保证,随机模型的方法最近得到了最新的关注。我们为改善基于模型的方法进行了两个重要扩展,即在随机弱凸优化上提高了基于模型的方法。首先,我们通过涉及一组样本来提出基于MiniBatch模型的方法,以近似每次迭代中的模型函数。我们首次表明随机算法即使对于非平滑和非凸(特别是弱凸)问题,即使是批量大小也可以实现线性加速。为此,我们开发了对每个算法迭代中涉及的近端映射的新颖敏感性分析。我们的分析似乎是更多常规设置的独立利益。其次,由于动量随机梯度下降的成功,我们提出了一种新的随机外推模型的方法,大大延伸到更广泛的随机算法中的经典多济会动量技术,用于弱凸优化。在相当灵活的外推术语范围内建立收敛速率。虽然主要关注弱凸优化,但我们还将我们的工作扩展到凸优化。我们将小纤维和外推模型的方法应用于随机凸优化,为此,我们为其提供了一种新的复杂性绑定和有前途的线性加速,批量尺寸。此外,提出了一种基于基于Nesterov动量的基于模型的方法,为此,我们建立了达到最优性的最佳复杂性。
translated by 谷歌翻译
我们考虑非凸凹minimax问题,$ \ min _ {\ mathbf {x}} \ mathcal {y}} f(\ mathbf {x},\ mathbf {y})$, $ f $在$ \ mathbf {x} $ on $ \ mathbf {y} $和$ \ mathcal {y} $中的$ \ \ mathbf {y} $。解决此问题的最受欢迎的算法之一是庆祝的梯度下降上升(GDA)算法,已广泛用于机器学习,控制理论和经济学。尽管凸凹设置的广泛收敛结果,但具有相等步骤的GDA可以收敛以限制循环甚至在一般设置中发散。在本文中,我们介绍了两次尺度GDA的复杂性结果,以解决非膨胀凹入的最小问题,表明该算法可以找到函数$ \ phi(\ cdot)的静止点:= \ max _ {\ mathbf {Y} \ In \ Mathcal {Y}} F(\ CDOT,\ MATHBF {Y})高效。据我们所知,这是对这一环境中的两次尺度GDA的第一个非因对药分析,阐明了其在培训生成对抗网络(GANS)和其他实际应用中的优越实际表现。
translated by 谷歌翻译
在本文中,我们开发了一种新型加速算法,以解决一些最大单调方程以及单调夹杂物。我们的方法而不是使用Nesterov的加速方法,而是依赖于[32]中所谓的Halpern型固定点迭代,最近由许多研究人员利用,包括[24,70]。首先,我们基于Popov过去的超梯度方法来解决[70]中的锚定梯度方案的新变种,以解决最大单调方程$ g(x)= 0 $。我们表明我们的方法与运营商规范$ \ vert g(x_k)\ vert上的锚定梯度算法相同$,但只需要在每次迭代的每次迭代时进行一次评估,其中$ k $是迭代计数器。接下来,我们开发两个分割算法,以近似两个最大单调的运算符之和的零点。第一算法源自与分裂技术组合的锚定梯度方法,而第二个是其波波夫的变体,其可以降低偏移复杂度。这两种算法似乎都是新的,可以被视为Douglas-Rachford(DR)分裂方法的加速变体。他们均达到$ \ mathcal {o}(1 / k)$ rations上的正常r_ {\ gamma}(x_k)\ vert $ g _ {\ gamma}(\ cdot) $与问题相关联。我们还提出了一个新的加速Douglas-Rachford分裂方案,用于解决这个问题,该问题在$ \ vert g _ {\ gamma}(x_k)\ vert $下的$ \ mathcal {o}(1 / k)$收敛率下面只有最大单调假设。最后,我们指定了我们的第一算法来解决凸凹minimax问题,并应用我们加速的DR方案来得出乘法器(ADMM)的交替方向方法的新变型。
translated by 谷歌翻译
该工作研究限制了随机函数是凸的,并表示为随机函数的组成。问题是在公平分类,公平回归和排队系统设计的背景下出现的。特别令人感兴趣的是甲骨文提供组成函数的随机梯度的大规模设置,目标是用最小对Oracle的调用来解决问题。由于组成形式,Oracle提供的随机梯度不会产生目标或约束梯度的无偏估计。取而代之的是,我们通过跟踪内部函数评估来构建近似梯度,从而导致准差鞍点算法。我们证明,所提出的算法几乎可以肯定地找到最佳和可行的解决方案。我们进一步确定所提出的算法需要$ \ MATHCAL {O}(1/\ EPSILON^4)$数据样本,以便获得$ \ epsilon $ -Approximate-approximate-apptroximate Pointal点,同时也确保零约束违反。该结果与无约束问题的随机成分梯度下降方法的样品复杂性相匹配,并改善了受约束设置的最著名样品复杂性结果。在公平分类和公平回归问题上测试了所提出的算法的功效。数值结果表明,根据收敛速率,所提出的算法优于最新算法。
translated by 谷歌翻译
Despite its popularity in the reinforcement learning community, a provably convergent policy gradient method for continuous space-time control problems with nonlinear state dynamics has been elusive. This paper proposes proximal gradient algorithms for feedback controls of finite-time horizon stochastic control problems. The state dynamics are nonlinear diffusions with control-affine drift, and the cost functions are nonconvex in the state and nonsmooth in the control. The system noise can degenerate, which allows for deterministic control problems as special cases. We prove under suitable conditions that the algorithm converges linearly to a stationary point of the control problem, and is stable with respect to policy updates by approximate gradient steps. The convergence result justifies the recent reinforcement learning heuristics that adding entropy regularization or a fictitious discount factor to the optimization objective accelerates the convergence of policy gradient methods. The proof exploits careful regularity estimates of backward stochastic differential equations.
translated by 谷歌翻译