以前有几种基于神经网络的方法可以在盐和胡椒噪声方面具有出色的性能。但是,这些方法是基于一个假设,即盐和胡椒噪声的价值正好为0和255。在现实世界中,这并非如此。当值不同于0和255时,这些方法的结果急剧偏离。为了克服这种弱点,我们的方法旨在设计卷积神经网络以检测较大值范围内的噪声像素,然后使用过滤器修改过滤器像素值为0,这对进一步过滤非常有益。此外,另一个卷积神经网络用于进行转化和恢复工作。
translated by 谷歌翻译
Discriminative model learning for image denoising has been recently attracting considerable attentions due to its favorable denoising performance. In this paper, we take one step forward by investigating the construction of feed-forward denoising convolutional neural networks (DnCNNs) to embrace the progress in very deep architecture, learning algorithm, and regularization method into image denoising. Specifically, residual learning and batch normalization are utilized to speed up the training process as well as boost the denoising performance. Different from the existing discriminative denoising models which usually train a specific model for additive white Gaussian noise (AWGN) at a certain noise level, our DnCNN model is able to handle Gaussian denoising with unknown noise level (i.e., blind Gaussian denoising). With the residual learning strategy, DnCNN implicitly removes the latent clean image in the hidden layers. This property motivates us to train a single DnCNN model to tackle with several general image denoising tasks such as Gaussian denoising, single image super-resolution and JPEG image deblocking. Our extensive experiments demonstrate that our DnCNN model can not only exhibit high effectiveness in several general image denoising tasks, but also be efficiently implemented by benefiting from GPU computing.
translated by 谷歌翻译
Recently, very deep convolutional neural networks (CNNs) have been attracting considerable attention in image restoration. However, as the depth grows, the long-term dependency problem is rarely realized for these very deep models, which results in the prior states/layers having little influence on the subsequent ones. Motivated by the fact that human thoughts have persistency, we propose a very deep persistent memory network (MemNet) that introduces a memory block, consisting of a recursive unit and a gate unit, to explicitly mine persistent memory through an adaptive learning process. The recursive unit learns multi-level representations of the current state under different receptive fields. The representations and the outputs from the previous memory blocks are concatenated and sent to the gate unit, which adaptively controls how much of the previous states should be reserved, and decides how much of the current state should be stored. We apply MemNet to three image restoration tasks, i.e., image denosing, superresolution and JPEG deblocking. Comprehensive experiments demonstrate the necessity of the MemNet and its unanimous superiority on all three tasks over the state of the arts. Code is available at https://github.com/ tyshiwo/MemNet.
translated by 谷歌翻译
基于深度学习的高光谱图像(HSI)恢复方法因其出色的性能而广受欢迎,但每当任务更改的细节时,通常都需要昂贵的网络再培训。在本文中,我们建议使用有效的插入方法以统一的方法恢复HSI,该方法可以共同保留基于优化方法的灵活性,并利用深神经网络的强大表示能力。具体而言,我们首先开发了一个新的深HSI DeNoiser,利用了门控复发单元,短期和长期的跳过连接以及增强的噪声水平图,以更好地利用HSIS内丰富的空间光谱信息。因此,这导致在高斯和复杂的噪声设置下,在HSI DeNosing上的最新性能。然后,在处理各种HSI恢复任务之前,将提议的DeNoiser插入即插即用的框架中。通过对HSI超分辨率,压缩感测和内部进行的广泛实验,我们证明了我们的方法经常实现卓越的性能,这与每个任务上的最先进的竞争性或甚至更好任何特定任务的培训。
translated by 谷歌翻译
迄今为止,纳米级的活细胞成像仍然具有挑战性。尽管超分辨率显微镜方法使得能够在光学分辨率下方的亚细胞结构的可视化,但空间分辨率仍然足够远,对于体内生物分子的结构重建仍然足够远(即24nm厚度的微管纤维)。在这项研究中,我们提出了一种A-Net网络,并显示通过基于劣化模型的DWDC算法组合A-Net DeeD学习网络,可以显着改善由共聚焦显微镜捕获的细胞骨架图像的分辨率。利用DWDC算法构建新数据集并利用A-Net神经网络的特征(即,层数较少),我们成功地消除了噪声和絮凝结构,最初干扰了原始图像中的蜂窝结构,并改善了空间分辨率使用相对较小的数据集10次。因此,我们得出结论,将A-Net神经网络与DWDC方法结合的所提出的算法是一种合适的和普遍的方法,用于从低分辨率图像中严格的生物分子,细胞和器官的结构细节。
translated by 谷歌翻译
最近,卷积神经网络(CNN)已被广泛用于图像DeNoising。现有方法受益于剩余学习并获得高性能。许多研究都注意到优化CNN的网络体系结构,但忽略了残留学习的局限性。本文提出了两个局限性。一个是残留学习的重点是估计噪声,从而忽略图像信息。另一个是图像自相似性没有被有效考虑。本文提出了一个组成剥落网络(CDN),其图像信息路径(IIP)和噪声估计路径(NEP)将分别解决这两个问题。 IIP通过图像到图像的方法来培训图像信息。对于NEP,它从训练的角度利用了图像自相似性。这种基于相似性的训练方法将NEP限制为输出具有特定类型噪声的不同图像贴片的相似估计噪声分布。最后,将全面考虑图像信息和噪声分布信息,以进行图像denoising。实验表明,CDN达到最新的结果会导致合成和现实世界图像降解。我们的代码将在https://github.com/jiahongz/cdn上发布。
translated by 谷歌翻译
放映摄像头(UDC)已被广泛利用,以帮助智能手机实现全屏显示。但是,由于屏幕不可避免地会影响光传播过程,因此UDC系统捕获的图像通常包含耀斑,雾霾,模糊和噪声。特别是,UDC图像中的耀斑和模糊可能会严重恶化高动态范围(HDR)场景的用户体验。在本文中,我们提出了一个新的深层模型,即UDC-UNET,以解决HDR场景中已知点扩展功能(PSF)的UDC图像恢复问题。在已知UDC系统的点扩散函数(PSF)的前提下,我们将UDC图像恢复视为非盲图像恢复问题,并提出了一种基于学习的新方法。我们的网络由三个部分组成,包括使用多尺度信息的U形基础网络,一个条件分支以执行空间变体调制以及一个内核分支,以提供给定PSF的先验知识。根据HDR数据的特征,我们还设计了音调映射损失,以稳定网络优化并获得更好的视觉质量。实验结果表明,所提出的UDC-UNET在定量和定性比较方面优于最新方法。我们的方法赢得了MIPI Challenge的UDC图像修复轨道的第二名。代码将公开可用。
translated by 谷歌翻译
Model-based optimization methods and discriminative learning methods have been the two dominant strategies for solving various inverse problems in low-level vision. Typically, those two kinds of methods have their respective merits and drawbacks, e.g., model-based optimization methods are flexible for handling different inverse problems but are usually time-consuming with sophisticated priors for the purpose of good performance; in the meanwhile, discriminative learning methods have fast testing speed but their application range is greatly restricted by the specialized task. Recent works have revealed that, with the aid of variable splitting techniques, denoiser prior can be plugged in as a modular part of model-based optimization methods to solve other inverse problems (e.g., deblurring). Such an integration induces considerable advantage when the denoiser is obtained via discriminative learning. However, the study of integration with fast discriminative denoiser prior is still lacking. To this end, this paper aims to train a set of fast and effective CNN (convolutional neural network) denoisers and integrate them into model-based optimization method to solve other inverse problems. Experimental results demonstrate that the learned set of denoisers not only achieve promising Gaussian denoising results but also can be used as prior to deliver good performance for various low-level vision applications.
translated by 谷歌翻译
Deep convolutional networks have become a popular tool for image generation and restoration. Generally, their excellent performance is imputed to their ability to learn realistic image priors from a large number of example images. In this paper, we show that, on the contrary, the structure of a generator network is sufficient to capture a great deal of low-level image statistics prior to any learning. In order to do so, we show that a randomly-initialized neural network can be used as a handcrafted prior with excellent results in standard inverse problems such as denoising, superresolution, and inpainting. Furthermore, the same prior can be used to invert deep neural representations to diagnose them, and to restore images based on flash-no flash input pairs.
translated by 谷歌翻译
在弱光条件下获得的图像将严重影响图像的质量。解决较差的弱光图像质量的问题可以有效地提高图像的视觉质量,并更好地改善计算机视觉的可用性。此外,它在许多领域都具有非常重要的应用。本文提出了基于视网膜的Deanet,以增强弱光图像。它将图像的频率信息和内容信息结合到三个子网络中:分解网络,增强网络和调整网络。这三个子网络分别用于分解,变形,对比度增强和细节保存,调整和图像产生。我们的模型对于所有低光图像都具有良好的良好结果。该模型对公共数据集进行了培训,实验结果表明,就视力和质量而言,我们的方法比现有的最新方法更好。
translated by 谷歌翻译
在本文中,我们呈现了UFFORER,一种用于图像恢复的有效和高效的变换器架构,其中我们使用变压器块构建分层编码器解码器网络。在UFFAR中,有两个核心设计。首先,我们介绍了一个新颖的本地增强型窗口(Lewin)变压器块,其执行基于窗口的自我关注而不是全局自我关注。它显着降低了高分辨率特征映射的计算复杂性,同时捕获本地上下文。其次,我们提出了一种以多尺度空间偏置的形式提出了一种学习的多尺度恢复调制器,以调整UFFORER解码器的多个层中的特征。我们的调制器展示了卓越的能力,用于恢复各种图像恢复任务的详细信息,同时引入边缘额外参数和计算成本。通过这两个设计提供支持,UFFORER享有高能力,可以捕获本地和全局依赖性的图像恢复。为了评估我们的方法,在几种图像恢复任务中进行了广泛的实验,包括图像去噪,运动脱棕,散焦和污染物。没有钟声和口哨,与最先进的算法相比,我们的UFormer实现了卓越的性能或相当的性能。代码和模型可在https://github.com/zhendongwang6/uformer中找到。
translated by 谷歌翻译
最近,基于深度学习的图像降级方法在测试数据上具有与训练集相同的测试数据的有希望的性能,在该数据中,已经学习了基于合成或收集的现实世界训练数据的各种denoising模型。但是,在处理真实世界的嘈杂图像时,Denoising的性能仍然受到限制。在本文中,我们提出了一种简单而有效的贝叶斯深集合(BDE)方法,用于真实世界图像denoising,其中可以融合使用各种训练数据设置进行预训练的几位代表性的深层Denoiser,以提高稳健性。 BDE的基础是,现实世界的图像噪声高度取决于信号依赖性,并且在现实世界中的嘈杂图像中的异质噪声可以由不同的Deoisiser分别处理。特别是,我们将受过良好训练的CBDNET,NBNET,HINET,UFORFORMER和GMSNET进入Denoiser池,并采用U-NET来预测Pixel的加权图以融合这些DeOisiser。引入了贝叶斯深度学习策略,而不是仅仅学习像素的加权地图,而是为了预测加权不确定性和加权图,可以通过该策略来建模预测差异,以改善现实世界中的嘈杂图像的鲁棒性。广泛的实验表明,可以通过融合现有的DINOISER而不是训练一个以昂贵的成本来训练一个大的Denoiser来更好地消除现实世界的噪音。在DND数据集上,我们的BDE实现了 +0.28〜dB PSNR的增益,而不是最先进的denoising方法。此外,我们注意到,在应用于现实世界嘈杂的图像时,基于不同高斯噪声水平的BDE Denoiser优于最先进的CBDNET。此外,我们的BDE可以扩展到其他图像恢复任务,并在基准数据集上获得 +0.30dB, +0.18dB和 +0.12dB PSNR的收益,以分别用于图像去除图像,图像降低和单个图像超级分辨率。
translated by 谷歌翻译
在光子 - 稀缺情况下的成像引入了许多应用的挑战,因为捕获的图像具有低信噪比和较差的亮度。在本文中,我们通过模拟量子图像传感器(QIS)的成像来研究低光子计数条件下的原始图像恢复。我们开发了一个轻量级框架,由多级金字塔去噪网络(MPDNET)和亮度调整(LA)模块组成,以实现单独的去噪和亮度增强。我们框架的主要组成部分是多跳过的剩余块(MARB),其集成了多尺度特征融合和注意机制,以实现更好的特征表示。我们的MPDNET采用拉普拉斯金字塔的想法,以了解不同级别的小规模噪声图和大规模的高频细节,在多尺度输入图像上进行特征提取,以编码更丰富的上下文信息。我们的LA模块通过估计其照明来增强去噪图像的亮度,这可以更好地避免颜色变形。广泛的实验结果表明,通过抑制噪声并有效地恢复亮度和颜色,我们的图像恢复器可以在具有各种光子水平的具有各种光子水平的降解图像上实现优异的性能。
translated by 谷歌翻译
Recently, convolutional neural networks (CNNs) and attention mechanisms have been widely used in image denoising and achieved satisfactory performance. However, the previous works mostly use a single head to receive the noisy image, limiting the richness of extracted features. Therefore, a novel CNN with multiple heads (MH) named MHCNN is proposed in this paper, whose heads will receive the input images rotated by different rotation angles. MH makes MHCNN simultaneously utilize features of rotated images to remove noise. To integrate these features effectively, we present a novel multi-path attention mechanism (MPA). Unlike previous attention mechanisms that handle pixel-level, channel-level, or patch-level features, MPA focuses on features at the image level. Experiments show MHCNN surpasses other state-of-the-art CNN models on additive white Gaussian noise (AWGN) denoising and real-world image denoising. Its peak signal-to-noise ratio (PSNR) results are higher than other networks, such as BRDNet, RIDNet, PAN-Net, and CSANN. The code is accessible at https://github.com/JiaHongZ/MHCNN.
translated by 谷歌翻译
盲图修复(IR)是计算机视觉中常见但充满挑战的问题。基于经典模型的方法和最新的深度学习(DL)方法代表了有关此问题的两种不同方法,每种方法都有自己的优点和缺点。在本文中,我们提出了一种新颖的盲图恢复方法,旨在整合它们的两种优势。具体而言,我们为盲IR构建了一个普通的贝叶斯生成模型,该模型明确描绘了降解过程。在此提出的模型中,PICEL的非I.I.D。高斯分布用于适合图像噪声。它的灵活性比简单的I.I.D。在大多数常规方法中采用的高斯或拉普拉斯分布,以处理图像降解中包含的更复杂的噪声类型。为了解决该模型,我们设计了一个变异推理算法,其中所有预期的后验分布都被参数化为深神经网络,以提高其模型能力。值得注意的是,这种推论算法诱导统一的框架共同处理退化估计和图像恢复的任务。此外,利用了前一种任务中估计的降解信息来指导后一种红外过程。对两项典型的盲型IR任务进行实验,即图像降解和超分辨率,表明所提出的方法比当前最新的方法实现了卓越的性能。
translated by 谷歌翻译
单个图像超分辨率(SISR)是一个不良问题,旨在获得从低分辨率(LR)输入的高分辨率(HR)输出,在此期间应该添加额外的高频信息以改善感知质量。现有的SISR工作主要通过最小化平均平方重建误差来在空间域中运行。尽管高峰峰值信噪比(PSNR)结果,但难以确定模型是否正确地添加所需的高频细节。提出了一些基于基于残余的结构,以指导模型暗示高频率特征。然而,由于空间域度量的解释是有限的,如何验证这些人为细节的保真度仍然是一个问题。在本文中,我们提出了频率域视角来的直观管道,解决了这个问题。由现有频域的工作启发,我们将图像转换为离散余弦变换(DCT)块,然后改革它们以获取DCT功能映射,它用作我们模型的输入和目标。设计了专门的管道,我们进一步提出了符合频域任务的性质的频率损失功能。我们的SISR方法在频域中可以明确地学习高频信息,为SR图像提供保真度和良好的感知质量。我们进一步观察到我们的模型可以与其他空间超分辨率模型合并,以提高原始SR输出的质量。
translated by 谷歌翻译
与传统CS方法相比,基于深度学习(DL)的压缩传感(CS)已被应用于图像重建的更好性能。但是,大多数现有的DL方法都利用逐个块测量,每个测量块分别恢复,这引入了重建的有害阻塞效应。此外,这些方法的神经元接受场被设计为每一层的大小相同,这只能收集单尺度的空间信息,并对重建过程产生负面影响。本文提出了一个新的框架,称为CS测量和重建的多尺度扩张卷积神经网络(MSDCNN)。在测量期间,我们直接从训练有素的测量网络中获得所有测量,该测量网络采用了完全卷积结构,并通过输入图像与重建网络共同训练。它不必将其切成块,从而有效地避免了块效应。在重建期间,我们提出了多尺度特征提取(MFE)体系结构,以模仿人类视觉系统以捕获同一功能映射的多尺度特征,从而增强了框架的图像特征提取能力并提高了框架的性能并提高了框架的性能。影像重建。在MFE中,有多个并行卷积通道以获取多尺度特征信息。然后,将多尺度功能信息融合在一起,并以高质量重建原始图像。我们的实验结果表明,根据PSNR和SSIM,该提出的方法对最新方法的性能有利。
translated by 谷歌翻译
在现实世界中,在雾度下拍摄的图像的降解可以是非常复杂的,其中雾度的空间分布从图像变化到图像。最近的方法采用深神经网络直接从朦胧图像中恢复清洁场景。然而,由于悖论由真正捕获的雾霾的变化和当前网络的固定退化参数引起的悖论,最近在真实朦胧的图像上的脱水方法的泛化能力不是理想的。解决现实世界建模问题阴霾退化,我们建议通过对不均匀雾度分布的鉴定和建模密度来解决这个问题。我们提出了一种新颖的可分离混合注意力(SHA)模块来编码雾霾密度,通过捕获正交方向上的特征来实现这一目标。此外,提出了密度图以明确地模拟雾度的不均匀分布。密度图以半监督方式生成位置编码。这种雾度密度感知和建模有效地捕获特征水平的不均匀分布性变性。通过SHA和密度图的合适组合,我们设计了一种新型的脱水网络架构,实现了良好的复杂性性能权衡。两个大规模数据集的广泛实验表明,我们的方法通过量化和定性地通过大幅度超越所有最先进的方法,将最佳发布的PSNR度量从28.53 DB升高到Haze4K测试数据集和在SOTS室内测试数据集中的37.17 dB至38.41 dB。
translated by 谷歌翻译
深卷积神经网络(CNN)用于图像通过自动挖掘精确的结构信息进行图像。但是,大多数现有的CNN依赖于扩大设计网络的深度以获得更好的降级性能,这可能会导致训练难度。在本文中,我们通过三个阶段(即动态卷积块(DCB),两个级联的小波变换和增强块(网络)和残留块(RB)(RB)(RB)(RB),提出了带有小波变换(MWDCNN)的多阶段图像。 。 DCB使用动态卷积来动态调整几次卷积的参数,以在降级性能和计算成本之间做出权衡。 Web使用信号处理技术(即小波转换)和判别性学习的组合来抑制噪声,以恢复图像Denoising中更详细的信息。为了进一步删除冗余功能,RB用于完善获得的功能,以改善通过改进残留密度架构来重建清洁图像的特征。实验结果表明,在定量和定性分析方面,提出的MWDCNN优于一些流行的非授权方法。代码可在https://github.com/hellloxiaotian/mwdcnn上找到。
translated by 谷歌翻译
构建高质量的角色图像数据集很具有挑战性,因为现实世界图像通常受图像退化的影响。将当前图像恢复方法应用于此类现实世界字符图像时存在局限性,因为(i)字符图像中的噪声类别与一般图像中的噪声类别不同; (ii)现实世界字符图像通常包含更复杂的图像降解,例如不同噪声水平的混合噪声。为了解决这些问题,我们提出了一个现实世界角色恢复网络(RCRN),以有效恢复降级的角色图像,其中使用字符骨架信息和比例安装特征提取来获得更好的恢复性能。所提出的方法由骨架提取器(SENET)和角色图像修复器(CIRNET)组成。 Senet旨在保持角色的结构一致性并使复杂的噪声正常化。然后,Cirnet从降级的角色图像及其骨骼中重建了清洁图像。由于缺乏现实世界字符图像恢复的基准,我们构建了一个包含1,606个字符图像的数据集,这些图像具有现实世界中的降级,以评估所提出方法的有效性。实验结果表明,RCRN在定量和质量上优于最先进的方法。
translated by 谷歌翻译