Recently, convolutional neural networks (CNNs) and attention mechanisms have been widely used in image denoising and achieved satisfactory performance. However, the previous works mostly use a single head to receive the noisy image, limiting the richness of extracted features. Therefore, a novel CNN with multiple heads (MH) named MHCNN is proposed in this paper, whose heads will receive the input images rotated by different rotation angles. MH makes MHCNN simultaneously utilize features of rotated images to remove noise. To integrate these features effectively, we present a novel multi-path attention mechanism (MPA). Unlike previous attention mechanisms that handle pixel-level, channel-level, or patch-level features, MPA focuses on features at the image level. Experiments show MHCNN surpasses other state-of-the-art CNN models on additive white Gaussian noise (AWGN) denoising and real-world image denoising. Its peak signal-to-noise ratio (PSNR) results are higher than other networks, such as BRDNet, RIDNet, PAN-Net, and CSANN. The code is accessible at https://github.com/JiaHongZ/MHCNN.
translated by 谷歌翻译
最近,卷积神经网络(CNN)已被广泛用于图像DeNoising。现有方法受益于剩余学习并获得高性能。许多研究都注意到优化CNN的网络体系结构,但忽略了残留学习的局限性。本文提出了两个局限性。一个是残留学习的重点是估计噪声,从而忽略图像信息。另一个是图像自相似性没有被有效考虑。本文提出了一个组成剥落网络(CDN),其图像信息路径(IIP)和噪声估计路径(NEP)将分别解决这两个问题。 IIP通过图像到图像的方法来培训图像信息。对于NEP,它从训练的角度利用了图像自相似性。这种基于相似性的训练方法将NEP限制为输出具有特定类型噪声的不同图像贴片的相似估计噪声分布。最后,将全面考虑图像信息和噪声分布信息,以进行图像denoising。实验表明,CDN达到最新的结果会导致合成和现实世界图像降解。我们的代码将在https://github.com/jiahongz/cdn上发布。
translated by 谷歌翻译
现实世界图像Denoising是一个实用的图像恢复问题,旨在从野外嘈杂的输入中获取干净的图像。最近,Vision Transformer(VIT)表现出强大的捕获远程依赖性的能力,许多研究人员试图将VIT应用于图像DeNosing任务。但是,现实世界的图像是一个孤立的框架,它使VIT构建了内部贴片的远程依赖性,该依赖性将图像分为贴片并混乱噪声模式和梯度连续性。在本文中,我们建议通过使用连续的小波滑动转换器来解决此问题,该小波滑动转换器在现实世界中构建频率对应关系,称为dnswin。具体而言,我们首先使用CNN编码器从嘈杂的输入图像中提取底部功能。 DNSWIN的关键是将高频和低频信息与功能和构建频率依赖性分开。为此,我们提出了小波滑动窗口变压器,该变压器利用离散的小波变换,自我注意力和逆离散小波变换来提取深度特征。最后,我们使用CNN解码器将深度特征重建为DeNo的图像。对现实世界的基准测试的定量和定性评估都表明,拟议的DNSWIN对最新方法的表现良好。
translated by 谷歌翻译
深卷积神经网络(CNN)用于图像通过自动挖掘精确的结构信息进行图像。但是,大多数现有的CNN依赖于扩大设计网络的深度以获得更好的降级性能,这可能会导致训练难度。在本文中,我们通过三个阶段(即动态卷积块(DCB),两个级联的小波变换和增强块(网络)和残留块(RB)(RB)(RB)(RB),提出了带有小波变换(MWDCNN)的多阶段图像。 。 DCB使用动态卷积来动态调整几次卷积的参数,以在降级性能和计算成本之间做出权衡。 Web使用信号处理技术(即小波转换)和判别性学习的组合来抑制噪声,以恢复图像Denoising中更详细的信息。为了进一步删除冗余功能,RB用于完善获得的功能,以改善通过改进残留密度架构来重建清洁图像的特征。实验结果表明,在定量和定性分析方面,提出的MWDCNN优于一些流行的非授权方法。代码可在https://github.com/hellloxiaotian/mwdcnn上找到。
translated by 谷歌翻译
Image restoration is a long-standing low-level vision problem that aims to restore high-quality images from lowquality images (e.g., downscaled, noisy and compressed images). While state-of-the-art image restoration methods are based on convolutional neural networks, few attempts have been made with Transformers which show impressive performance on high-level vision tasks. In this paper, we propose a strong baseline model SwinIR for image restoration based on the Swin Transformer. SwinIR consists of three parts: shallow feature extraction, deep feature extraction and high-quality image reconstruction. In particular, the deep feature extraction module is composed of several residual Swin Transformer blocks (RSTB), each of which has several Swin Transformer layers together with a residual connection. We conduct experiments on three representative tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. Experimental results demonstrate that SwinIR outperforms state-of-the-art methods on different tasks by up to 0.14∼0.45dB, while the total number of parameters can be reduced by up to 67%.
translated by 谷歌翻译
由于卷积神经网络在从大规模数据中学习可概括的图像先验方面表现良好,因此这些模型已被广泛用于图像DeNoise任务。但是,在复杂模型上,计算复杂性也急剧增加。在本文中,我们提出了一个新颖的轻巧互补注意模块,其中包括密度模块和稀疏模块,该模块可以合作地挖掘浓密和稀疏功能,以供特征互补学习,以构建有效的轻质体系结构。此外,为了减少因denoing而导致的细节丢失,本文构建了基于梯度的结构保护分支。我们利用基于梯度的分支来获取其他结构先验来进行降级,并使模型通过优化梯度损失优化,使模型更加关注图像几何细节。基于上述,我们提出了一个具有双分支的有效的UNET结构化网络,视觉结果显示这可以有效地保留原始图像的结构细节,我们评估了包括Sidd和DND在内的基准,其中Scanet在PSNR和SSIM中实现了最先进的性能,同时大大降低了计算成本。
translated by 谷歌翻译
在过去几年中,深度卷积神经网络在低光图像增强中取得了令人印象深刻的成功。深度学习方法大多通过堆叠网络结构并加深网络深度来提高特征提取的能力。在单个时导致更多的运行时间成本为了减少推理时间,在完全提取本地特征和全局特征的同时,我们通过SGN定期,我们提出了基于广泛的自我引导网络(Absgn)的现实世界低灯图像增强。策略是一种广泛的策略处理不同曝光的噪音。所提出的网络被许多主流基准验证.Aditional实验结果表明,所提出的网络优于最先进的低光图像增强解决方案。
translated by 谷歌翻译
卷积神经网络(CNNS)成功地进行了压缩图像感测。然而,由于局部性和重量共享的归纳偏差,卷积操作证明了建模远程依赖性的内在限制。变压器,最初作为序列到序列模型设计,在捕获由于基于自我关注的架构而捕获的全局背景中,即使它可以配备有限的本地化能力。本文提出了一种混合框架,一个混合框架,其集成了从CNN提供的借用的优点以及变压器提供的全局上下文,以获得增强的表示学习。所提出的方法是由自适应采样和恢复组成的端到端压缩图像感测方法。在采样模块中,通过学习的采样矩阵测量图像逐块。在重建阶段,将测量投射到双杆中。一个是用于通过卷积建模邻域关系的CNN杆,另一个是用于采用全球自我关注机制的变压器杆。双分支结构是并发,并且本地特征和全局表示在不同的分辨率下融合,以最大化功能的互补性。此外,我们探索一个渐进的战略和基于窗口的变压器块,以降低参数和计算复杂性。实验结果表明了基于专用变压器的架构进行压缩感测的有效性,与不同数据集的最先进方法相比,实现了卓越的性能。
translated by 谷歌翻译
在现实世界中,在雾度下拍摄的图像的降解可以是非常复杂的,其中雾度的空间分布从图像变化到图像。最近的方法采用深神经网络直接从朦胧图像中恢复清洁场景。然而,由于悖论由真正捕获的雾霾的变化和当前网络的固定退化参数引起的悖论,最近在真实朦胧的图像上的脱水方法的泛化能力不是理想的。解决现实世界建模问题阴霾退化,我们建议通过对不均匀雾度分布的鉴定和建模密度来解决这个问题。我们提出了一种新颖的可分离混合注意力(SHA)模块来编码雾霾密度,通过捕获正交方向上的特征来实现这一目标。此外,提出了密度图以明确地模拟雾度的不均匀分布。密度图以半监督方式生成位置编码。这种雾度密度感知和建模有效地捕获特征水平的不均匀分布性变性。通过SHA和密度图的合适组合,我们设计了一种新型的脱水网络架构,实现了良好的复杂性性能权衡。两个大规模数据集的广泛实验表明,我们的方法通过量化和定性地通过大幅度超越所有最先进的方法,将最佳发布的PSNR度量从28.53 DB升高到Haze4K测试数据集和在SOTS室内测试数据集中的37.17 dB至38.41 dB。
translated by 谷歌翻译
在本文中,我们呈现了UFFORER,一种用于图像恢复的有效和高效的变换器架构,其中我们使用变压器块构建分层编码器解码器网络。在UFFAR中,有两个核心设计。首先,我们介绍了一个新颖的本地增强型窗口(Lewin)变压器块,其执行基于窗口的自我关注而不是全局自我关注。它显着降低了高分辨率特征映射的计算复杂性,同时捕获本地上下文。其次,我们提出了一种以多尺度空间偏置的形式提出了一种学习的多尺度恢复调制器,以调整UFFORER解码器的多个层中的特征。我们的调制器展示了卓越的能力,用于恢复各种图像恢复任务的详细信息,同时引入边缘额外参数和计算成本。通过这两个设计提供支持,UFFORER享有高能力,可以捕获本地和全局依赖性的图像恢复。为了评估我们的方法,在几种图像恢复任务中进行了广泛的实验,包括图像去噪,运动脱棕,散焦和污染物。没有钟声和口哨,与最先进的算法相比,我们的UFormer实现了卓越的性能或相当的性能。代码和模型可在https://github.com/zhendongwang6/uformer中找到。
translated by 谷歌翻译
Recently, Transformer-based image restoration networks have achieved promising improvements over convolutional neural networks due to parameter-independent global interactions. To lower computational cost, existing works generally limit self-attention computation within non-overlapping windows. However, each group of tokens are always from a dense area of the image. This is considered as a dense attention strategy since the interactions of tokens are restrained in dense regions. Obviously, this strategy could result in restricted receptive fields. To address this issue, we propose Attention Retractable Transformer (ART) for image restoration, which presents both dense and sparse attention modules in the network. The sparse attention module allows tokens from sparse areas to interact and thus provides a wider receptive field. Furthermore, the alternating application of dense and sparse attention modules greatly enhances representation ability of Transformer while providing retractable attention on the input image.We conduct extensive experiments on image super-resolution, denoising, and JPEG compression artifact reduction tasks. Experimental results validate that our proposed ART outperforms state-of-the-art methods on various benchmark datasets both quantitatively and visually. We also provide code and models at the website https://github.com/gladzhang/ART.
translated by 谷歌翻译
Image restoration tasks demand a complex balance between spatial details and high-level contextualized information while recovering images. In this paper, we propose a novel synergistic design that can optimally balance these competing goals. Our main proposal is a multi-stage architecture, that progressively learns restoration functions for the degraded inputs, thereby breaking down the overall recovery process into more manageable steps. Specifically, our model first learns the contextualized features using encoder-decoder architectures and later combines them with a high-resolution branch that retains local information. At each stage, we introduce a novel per-pixel adaptive design that leverages in-situ supervised attention to reweight the local features. A key ingredient in such a multi-stage architecture is the information exchange between different stages. To this end, we propose a twofaceted approach where the information is not only exchanged sequentially from early to late stages, but lateral connections between feature processing blocks also exist to avoid any loss of information. The resulting tightly interlinked multi-stage architecture, named as MPRNet, delivers strong performance gains on ten datasets across a range of tasks including image deraining, deblurring, and denoising. The source code and pre-trained models are available at https://github.com/swz30/MPRNet.
translated by 谷歌翻译
由于卷积神经网络(CNNS)在从大规模数据中进行了学习的可概括图像前沿执行井,因此这些模型已被广泛地应用于图像恢复和相关任务。最近,另一类神经架构,变形金刚表现出对自然语言和高级视觉任务的显着性能。虽然变压器模型减轻了CNNS的缺点(即,有限的接收领域并对输入内容而无关),但其计算复杂性以空间分辨率二次大转,因此可以对涉及高分辨率图像的大多数图像恢复任务应用得不可行。在这项工作中,我们通过在构建块(多头关注和前锋网络)中进行多个关键设计,提出了一种有效的变压器模型,使得它可以捕获远程像素相互作用,同时仍然适用于大图像。我们的模型,命名恢复变压器(RESTORMER),实现了最先进的结果,导致几种图像恢复任务,包括图像派生,单图像运动脱棕,散焦去纹(单图像和双像素数据)和图像去噪(高斯灰度/颜色去噪,真实的图像去噪)。源代码和预先训练的型号可在https://github.com/swz30/restormer上获得。
translated by 谷歌翻译
在光子 - 稀缺情况下的成像引入了许多应用的挑战,因为捕获的图像具有低信噪比和较差的亮度。在本文中,我们通过模拟量子图像传感器(QIS)的成像来研究低光子计数条件下的原始图像恢复。我们开发了一个轻量级框架,由多级金字塔去噪网络(MPDNET)和亮度调整(LA)模块组成,以实现单独的去噪和亮度增强。我们框架的主要组成部分是多跳过的剩余块(MARB),其集成了多尺度特征融合和注意机制,以实现更好的特征表示。我们的MPDNET采用拉普拉斯金字塔的想法,以了解不同级别的小规模噪声图和大规模的高频细节,在多尺度输入图像上进行特征提取,以编码更丰富的上下文信息。我们的LA模块通过估计其照明来增强去噪图像的亮度,这可以更好地避免颜色变形。广泛的实验结果表明,通过抑制噪声并有效地恢复亮度和颜色,我们的图像恢复器可以在具有各种光子水平的具有各种光子水平的降解图像上实现优异的性能。
translated by 谷歌翻译
使用注意机制的深度卷积神经网络(CNN)在动态场景中取得了巨大的成功。在大多数这些网络中,只能通过注意图精炼的功能传递到下一层,并且不同层的注意力图彼此分开,这并不能充分利用来自CNN中不同层的注意信息。为了解决这个问题,我们引入了一种新的连续跨层注意传播(CCLAT)机制,该机制可以利用所有卷积层的分层注意信息。基于CCLAT机制,我们使用非常简单的注意模块来构建一个新型残留的密集注意融合块(RDAFB)。在RDAFB中,从上述RDAFB的输出中推断出的注意图和每一层直接连接到后续的映射,从而导致CRLAT机制。以RDAFB为基础,我们为动态场景Deblurring设计了一个名为RDAFNET的有效体系结构。基准数据集上的实验表明,所提出的模型的表现优于最先进的脱毛方法,并证明了CCLAT机制的有效性。源代码可在以下网址提供:https://github.com/xjmz6/rdafnet。
translated by 谷歌翻译
偏光颜色摄影在一个快照中提供视觉纹理和对象表面信息。但是,与常规颜色成像相比,定向偏振阵列的使用会导致极低的光子计数和SNR。因此,该特征实质上导致令人不愉快的嘈杂图像并破坏极化分析性能。对于传统的图像处理管道来说,这是一个挑战,因为事实是,隐式施加在渠道中的物理约束过于复杂。为了解决这个问题,我们提出了一种基于学习的方法,以同时恢复清洁信号和精确的极化信息。捕获了配对的原始短期嘈杂和长期暴露参考图像的真实世界两极化的颜色图像数据集,以支持基于学习的管道。此外,我们采用视觉变压器的开发,并提出了一个混合变压器模型,用于偏光颜色图像denoising,即PocoFormer,以更好地恢复性能。大量的实验证明了所提出的方法的有效性和影响结果的关键因素。
translated by 谷歌翻译
Discriminative model learning for image denoising has been recently attracting considerable attentions due to its favorable denoising performance. In this paper, we take one step forward by investigating the construction of feed-forward denoising convolutional neural networks (DnCNNs) to embrace the progress in very deep architecture, learning algorithm, and regularization method into image denoising. Specifically, residual learning and batch normalization are utilized to speed up the training process as well as boost the denoising performance. Different from the existing discriminative denoising models which usually train a specific model for additive white Gaussian noise (AWGN) at a certain noise level, our DnCNN model is able to handle Gaussian denoising with unknown noise level (i.e., blind Gaussian denoising). With the residual learning strategy, DnCNN implicitly removes the latent clean image in the hidden layers. This property motivates us to train a single DnCNN model to tackle with several general image denoising tasks such as Gaussian denoising, single image super-resolution and JPEG image deblocking. Our extensive experiments demonstrate that our DnCNN model can not only exhibit high effectiveness in several general image denoising tasks, but also be efficiently implemented by benefiting from GPU computing.
translated by 谷歌翻译
最近,一些研究在图像压缩感测(CS)任务中应用了深层卷积神经网络(CNN),以提高重建质量。但是,卷积层通常具有一个小的接受场。因此,使用CNN捕获远程像素相关性是具有挑战性的,这限制了其在Image CS任务中的重建性能。考虑到这一限制,我们为图像CS任务(称为uformer-ics)提出了一个U形变压器。我们通过将CS的先验投影知识集成到原始变压器块中,然后使用基于投影基于投影的变压器块和残留卷积块构建对称重建模型来开发一个基于投影的变压器块。与以前的基于CNN的CS方法相比,只能利用本地图像特征,建议的重建模型可以同时利用图像的局部特征和远程依赖性,以及CS理论的先前投影知识。此外,我们设计了一个自适应采样模型,该模型可以基于块稀疏性自适应采样图像块,这可以确保压缩结果保留在固定采样比下原始图像的最大可能信息。提出的UFORFORFOR-ICS是一个端到端框架,同时学习采样和重建过程。实验结果表明,与现有的基于深度学习的CS方法相比,它的重建性能明显优于重建性能。
translated by 谷歌翻译
最近的变形金刚和多层Perceptron(MLP)模型的进展为计算机视觉任务提供了新的网络架构设计。虽然这些模型在许多愿景任务中被证明是有效的,但在图像识别之类的愿景中,仍然存在挑战,使他们适应低级视觉。支持高分辨率图像和本地注意力的局限性的不灵活性可能是使用变压器和MLP在图像恢复中的主要瓶颈。在这项工作中,我们介绍了一个多轴MLP基于MARIC的架构,称为Maxim,可用作用于图像处理任务的高效和灵活的通用视觉骨干。 Maxim使用UNET形的分层结构,并支持由空间门控MLP启用的远程交互。具体而言,Maxim包含两个基于MLP的构建块:多轴门控MLP,允许局部和全球视觉线索的高效和可扩展的空间混合,以及交叉栅栏,替代跨关注的替代方案 - 细分互补。这两个模块都仅基于MLP,而且还受益于全局和“全卷积”,两个属性对于图像处理是可取的。我们广泛的实验结果表明,所提出的Maxim模型在一系列图像处理任务中实现了十多个基准的最先进的性能,包括去噪,失败,派热,脱落和增强,同时需要更少或相当的数量参数和拖鞋而不是竞争模型。
translated by 谷歌翻译
A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features from the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in image SR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via dense connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory (CM) mechanism. Local feature fusion in RDB is then used to adaptively learn more effective features from preceding and current local features and stabilizes the training of wider network. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. Experiments on benchmark datasets with different degradation models show that our RDN achieves favorable performance against state-of-the-art methods.
translated by 谷歌翻译