深卷积神经网络(CNN)用于图像通过自动挖掘精确的结构信息进行图像。但是,大多数现有的CNN依赖于扩大设计网络的深度以获得更好的降级性能,这可能会导致训练难度。在本文中,我们通过三个阶段(即动态卷积块(DCB),两个级联的小波变换和增强块(网络)和残留块(RB)(RB)(RB)(RB),提出了带有小波变换(MWDCNN)的多阶段图像。 。 DCB使用动态卷积来动态调整几次卷积的参数,以在降级性能和计算成本之间做出权衡。 Web使用信号处理技术(即小波转换)和判别性学习的组合来抑制噪声,以恢复图像Denoising中更详细的信息。为了进一步删除冗余功能,RB用于完善获得的功能,以改善通过改进残留密度架构来重建清洁图像的特征。实验结果表明,在定量和定性分析方面,提出的MWDCNN优于一些流行的非授权方法。代码可在https://github.com/hellloxiaotian/mwdcnn上找到。
translated by 谷歌翻译
具有强大学习能力的CNN被广泛选择以解决超分辨率问题。但是,CNN依靠更深的网络体系结构来提高图像超分辨率的性能,这可能会增加计算成本。在本文中,我们提出了一个增强的超分辨率组CNN(ESRGCNN),具有浅层架构,通过完全融合了深层和宽的通道特征,以在单图超级分辨率中的不同通道的相关性提取更准确的低频信息( SISR)。同样,ESRGCNN中的信号增强操作对于继承更长途上下文信息以解决长期依赖性也很有用。将自适应上采样操作收集到CNN中,以获得具有不同大小的低分辨率图像的图像超分辨率模型。广泛的实验报告说,我们的ESRGCNN在SISR中的SISR性能,复杂性,执行速度,图像质量评估和SISR的视觉效果方面超过了最先进的实验。代码可在https://github.com/hellloxiaotian/esrgcnn上找到。
translated by 谷歌翻译
卷积神经网络(CNN)通过深度体系结构获得了出色的性能。但是,这些CNN在复杂的场景下通常对图像超分辨率(SR)实现较差的鲁棒性。在本文中,我们通过利用不同类型的结构信息来获得高质量图像,提出了异质组SR CNN(HGSRCNN)。具体而言,HGSRCNN的每个异质组块(HGB)都采用含有对称组卷积块和互补的卷积块的异质体系结构,并以平行方式增强不同渠道的内部和外部关系,以促进富裕类型的较富裕类型的信息, 。为了防止出现获得的冗余功能,以串行方式具有信号增强功能的完善块旨在过滤无用的信息。为了防止原始信息的丢失,多级增强机制指导CNN获得对称架构,以促进HGSRCNN的表达能力。此外,开发了一种平行的向上采样机制来训练盲目的SR模型。广泛的实验表明,在定量和定性分析方面,提出的HGSRCNN获得了出色的SR性能。可以在https://github.com/hellloxiaotian/hgsrcnn上访问代码。
translated by 谷歌翻译
最近,卷积神经网络(CNN)已被广泛用于图像DeNoising。现有方法受益于剩余学习并获得高性能。许多研究都注意到优化CNN的网络体系结构,但忽略了残留学习的局限性。本文提出了两个局限性。一个是残留学习的重点是估计噪声,从而忽略图像信息。另一个是图像自相似性没有被有效考虑。本文提出了一个组成剥落网络(CDN),其图像信息路径(IIP)和噪声估计路径(NEP)将分别解决这两个问题。 IIP通过图像到图像的方法来培训图像信息。对于NEP,它从训练的角度利用了图像自相似性。这种基于相似性的训练方法将NEP限制为输出具有特定类型噪声的不同图像贴片的相似估计噪声分布。最后,将全面考虑图像信息和噪声分布信息,以进行图像denoising。实验表明,CDN达到最新的结果会导致合成和现实世界图像降解。我们的代码将在https://github.com/jiahongz/cdn上发布。
translated by 谷歌翻译
现实世界图像Denoising是一个实用的图像恢复问题,旨在从野外嘈杂的输入中获取干净的图像。最近,Vision Transformer(VIT)表现出强大的捕获远程依赖性的能力,许多研究人员试图将VIT应用于图像DeNosing任务。但是,现实世界的图像是一个孤立的框架,它使VIT构建了内部贴片的远程依赖性,该依赖性将图像分为贴片并混乱噪声模式和梯度连续性。在本文中,我们建议通过使用连续的小波滑动转换器来解决此问题,该小波滑动转换器在现实世界中构建频率对应关系,称为dnswin。具体而言,我们首先使用CNN编码器从嘈杂的输入图像中提取底部功能。 DNSWIN的关键是将高频和低频信息与功能和构建频率依赖性分开。为此,我们提出了小波滑动窗口变压器,该变压器利用离散的小波变换,自我注意力和逆离散小波变换来提取深度特征。最后,我们使用CNN解码器将深度特征重建为DeNo的图像。对现实世界的基准测试的定量和定性评估都表明,拟议的DNSWIN对最新方法的表现良好。
translated by 谷歌翻译
Recently, convolutional neural networks (CNNs) and attention mechanisms have been widely used in image denoising and achieved satisfactory performance. However, the previous works mostly use a single head to receive the noisy image, limiting the richness of extracted features. Therefore, a novel CNN with multiple heads (MH) named MHCNN is proposed in this paper, whose heads will receive the input images rotated by different rotation angles. MH makes MHCNN simultaneously utilize features of rotated images to remove noise. To integrate these features effectively, we present a novel multi-path attention mechanism (MPA). Unlike previous attention mechanisms that handle pixel-level, channel-level, or patch-level features, MPA focuses on features at the image level. Experiments show MHCNN surpasses other state-of-the-art CNN models on additive white Gaussian noise (AWGN) denoising and real-world image denoising. Its peak signal-to-noise ratio (PSNR) results are higher than other networks, such as BRDNet, RIDNet, PAN-Net, and CSANN. The code is accessible at https://github.com/JiaHongZ/MHCNN.
translated by 谷歌翻译
Discriminative model learning for image denoising has been recently attracting considerable attentions due to its favorable denoising performance. In this paper, we take one step forward by investigating the construction of feed-forward denoising convolutional neural networks (DnCNNs) to embrace the progress in very deep architecture, learning algorithm, and regularization method into image denoising. Specifically, residual learning and batch normalization are utilized to speed up the training process as well as boost the denoising performance. Different from the existing discriminative denoising models which usually train a specific model for additive white Gaussian noise (AWGN) at a certain noise level, our DnCNN model is able to handle Gaussian denoising with unknown noise level (i.e., blind Gaussian denoising). With the residual learning strategy, DnCNN implicitly removes the latent clean image in the hidden layers. This property motivates us to train a single DnCNN model to tackle with several general image denoising tasks such as Gaussian denoising, single image super-resolution and JPEG image deblocking. Our extensive experiments demonstrate that our DnCNN model can not only exhibit high effectiveness in several general image denoising tasks, but also be efficiently implemented by benefiting from GPU computing.
translated by 谷歌翻译
在过去几年中,深度卷积神经网络在低光图像增强中取得了令人印象深刻的成功。深度学习方法大多通过堆叠网络结构并加深网络深度来提高特征提取的能力。在单个时导致更多的运行时间成本为了减少推理时间,在完全提取本地特征和全局特征的同时,我们通过SGN定期,我们提出了基于广泛的自我引导网络(Absgn)的现实世界低灯图像增强。策略是一种广泛的策略处理不同曝光的噪音。所提出的网络被许多主流基准验证.Aditional实验结果表明,所提出的网络优于最先进的低光图像增强解决方案。
translated by 谷歌翻译
在弱照明条件下捕获的图像可能会严重降低图像质量。求解一系列低光图像的降解可以有效地提高图像的视觉质量和高级视觉任务的性能。在本研究中,提出了一种新的基于RETINEX的实际网络(R2RNET),用于低光图像增强,其包括三个子网:DECOM-NET,DENOISE-NET和RELIGHT-NET。这三个子网分别用于分解,去噪,对比增强和细节保存。我们的R2RNET不仅使用图像的空间信息来提高对比度,还使用频率信息来保留细节。因此,我们的模型对所有退化的图像进行了更强大的结果。与在合成图像上培训的最先前的方法不同,我们收集了第一个大型现实世界配对的低/普通灯图像数据集(LSRW数据集),以满足培训要求,使我们的模型具有更好的现实世界中的泛化性能场景。对公共数据集的广泛实验表明,我们的方法在定量和视觉上以现有的最先进方法优于现有的现有方法。此外,我们的结果表明,通过使用我们在低光条件下的方法获得的增强的结果,可以有效地改善高级视觉任务(即面部检测)的性能。我们的代码和LSRW数据集可用于:https://github.com/abcdef2000/r2rnet。
translated by 谷歌翻译
Recently, very deep convolutional neural networks (CNNs) have been attracting considerable attention in image restoration. However, as the depth grows, the long-term dependency problem is rarely realized for these very deep models, which results in the prior states/layers having little influence on the subsequent ones. Motivated by the fact that human thoughts have persistency, we propose a very deep persistent memory network (MemNet) that introduces a memory block, consisting of a recursive unit and a gate unit, to explicitly mine persistent memory through an adaptive learning process. The recursive unit learns multi-level representations of the current state under different receptive fields. The representations and the outputs from the previous memory blocks are concatenated and sent to the gate unit, which adaptively controls how much of the previous states should be reserved, and decides how much of the current state should be stored. We apply MemNet to three image restoration tasks, i.e., image denosing, superresolution and JPEG deblocking. Comprehensive experiments demonstrate the necessity of the MemNet and its unanimous superiority on all three tasks over the state of the arts. Code is available at https://github.com/ tyshiwo/MemNet.
translated by 谷歌翻译
在许多计算机视觉子域中,图像降级仍然是一个具有挑战性的问题。最近的研究表明,在有监督的环境中取得了重大改进。但是,很少有挑战(例如空间忠诚度和类似卡通的平滑度)仍未解决或果断地忽略。我们的研究提出了一个简单而有效的架构,用于解决上述问题的降级问题。所提出的体系结构重新审视了模块化串联的概念,而不是长时间和更深的级联连接,以恢复给定图像的更清洁近似。我们发现不同的模块可以捕获多功能表示形式,而串联表示为低级图像恢复创造了更丰富的子空间。所提出的架构的参数数量仍然小于以前的大多数网络的数量,并且仍然对当前最新网络进行了重大改进。
translated by 谷歌翻译
由于卷积神经网络在从大规模数据中学习可概括的图像先验方面表现良好,因此这些模型已被广泛用于图像DeNoise任务。但是,在复杂模型上,计算复杂性也急剧增加。在本文中,我们提出了一个新颖的轻巧互补注意模块,其中包括密度模块和稀疏模块,该模块可以合作地挖掘浓密和稀疏功能,以供特征互补学习,以构建有效的轻质体系结构。此外,为了减少因denoing而导致的细节丢失,本文构建了基于梯度的结构保护分支。我们利用基于梯度的分支来获取其他结构先验来进行降级,并使模型通过优化梯度损失优化,使模型更加关注图像几何细节。基于上述,我们提出了一个具有双分支的有效的UNET结构化网络,视觉结果显示这可以有效地保留原始图像的结构细节,我们评估了包括Sidd和DND在内的基准,其中Scanet在PSNR和SSIM中实现了最先进的性能,同时大大降低了计算成本。
translated by 谷歌翻译
最近,基于深度学习的图像降级方法在测试数据上具有与训练集相同的测试数据的有希望的性能,在该数据中,已经学习了基于合成或收集的现实世界训练数据的各种denoising模型。但是,在处理真实世界的嘈杂图像时,Denoising的性能仍然受到限制。在本文中,我们提出了一种简单而有效的贝叶斯深集合(BDE)方法,用于真实世界图像denoising,其中可以融合使用各种训练数据设置进行预训练的几位代表性的深层Denoiser,以提高稳健性。 BDE的基础是,现实世界的图像噪声高度取决于信号依赖性,并且在现实世界中的嘈杂图像中的异质噪声可以由不同的Deoisiser分别处理。特别是,我们将受过良好训练的CBDNET,NBNET,HINET,UFORFORMER和GMSNET进入Denoiser池,并采用U-NET来预测Pixel的加权图以融合这些DeOisiser。引入了贝叶斯深度学习策略,而不是仅仅学习像素的加权地图,而是为了预测加权不确定性和加权图,可以通过该策略来建模预测差异,以改善现实世界中的嘈杂图像的鲁棒性。广泛的实验表明,可以通过融合现有的DINOISER而不是训练一个以昂贵的成本来训练一个大的Denoiser来更好地消除现实世界的噪音。在DND数据集上,我们的BDE实现了 +0.28〜dB PSNR的增益,而不是最先进的denoising方法。此外,我们注意到,在应用于现实世界嘈杂的图像时,基于不同高斯噪声水平的BDE Denoiser优于最先进的CBDNET。此外,我们的BDE可以扩展到其他图像恢复任务,并在基准数据集上获得 +0.30dB, +0.18dB和 +0.12dB PSNR的收益,以分别用于图像去除图像,图像降低和单个图像超级分辨率。
translated by 谷歌翻译
基于对抗性学习的图像抑制方法,由于其出色的性能,已经在计算机视觉中进行了广泛的研究。但是,大多数现有方法对实际情况的质量功能有限,因为它们在相同场景的透明和合成的雾化图像上进行了培训。此外,它们在保留鲜艳的色彩和丰富的文本细节方面存在局限性。为了解决这些问题,我们开发了一个新颖的生成对抗网络,称为整体注意力融合对抗网络(HAAN),用于单个图像。 Haan由Fog2FogFogre块和FogFree2Fog块组成。在每个块中,有三个基于学习的模块,即雾除雾,颜色纹理恢复和雾合成,它们相互限制以生成高质量的图像。 Haan旨在通过学习雾图图像之间的整体通道空间特征相关性及其几个派生图像之间的整体通道空间特征相关性来利用纹理和结构信息的自相似性。此外,在雾合成模块中,我们利用大气散射模型来指导它,以通过新颖的天空分割网络专注于大气光优化来提高生成质量。关于合成和现实世界数据集的广泛实验表明,就定量准确性和主观的视觉质量而言,Haan的表现优于最先进的脱落方法。
translated by 谷歌翻译
在光子 - 稀缺情况下的成像引入了许多应用的挑战,因为捕获的图像具有低信噪比和较差的亮度。在本文中,我们通过模拟量子图像传感器(QIS)的成像来研究低光子计数条件下的原始图像恢复。我们开发了一个轻量级框架,由多级金字塔去噪网络(MPDNET)和亮度调整(LA)模块组成,以实现单独的去噪和亮度增强。我们框架的主要组成部分是多跳过的剩余块(MARB),其集成了多尺度特征融合和注意机制,以实现更好的特征表示。我们的MPDNET采用拉普拉斯金字塔的想法,以了解不同级别的小规模噪声图和大规模的高频细节,在多尺度输入图像上进行特征提取,以编码更丰富的上下文信息。我们的LA模块通过估计其照明来增强去噪图像的亮度,这可以更好地避免颜色变形。广泛的实验结果表明,通过抑制噪声并有效地恢复亮度和颜色,我们的图像恢复器可以在具有各种光子水平的具有各种光子水平的降解图像上实现优异的性能。
translated by 谷歌翻译
盲图修复(IR)是计算机视觉中常见但充满挑战的问题。基于经典模型的方法和最新的深度学习(DL)方法代表了有关此问题的两种不同方法,每种方法都有自己的优点和缺点。在本文中,我们提出了一种新颖的盲图恢复方法,旨在整合它们的两种优势。具体而言,我们为盲IR构建了一个普通的贝叶斯生成模型,该模型明确描绘了降解过程。在此提出的模型中,PICEL的非I.I.D。高斯分布用于适合图像噪声。它的灵活性比简单的I.I.D。在大多数常规方法中采用的高斯或拉普拉斯分布,以处理图像降解中包含的更复杂的噪声类型。为了解决该模型,我们设计了一个变异推理算法,其中所有预期的后验分布都被参数化为深神经网络,以提高其模型能力。值得注意的是,这种推论算法诱导统一的框架共同处理退化估计和图像恢复的任务。此外,利用了前一种任务中估计的降解信息来指导后一种红外过程。对两项典型的盲型IR任务进行实验,即图像降解和超分辨率,表明所提出的方法比当前最新的方法实现了卓越的性能。
translated by 谷歌翻译
Image restoration under hazy weather condition, which is called single image dehazing, has been of significant interest for various computer vision applications. In recent years, deep learning-based methods have achieved success. However, existing image dehazing methods typically neglect the hierarchy of features in the neural network and fail to exploit their relationships fully. To this end, we propose an effective image dehazing method named Hierarchical Contrastive Dehazing (HCD), which is based on feature fusion and contrastive learning strategies. HCD consists of a hierarchical dehazing network (HDN) and a novel hierarchical contrastive loss (HCL). Specifically, the core design in the HDN is a Hierarchical Interaction Module, which utilizes multi-scale activation to revise the feature responses hierarchically. To cooperate with the training of HDN, we propose HCL which performs contrastive learning on hierarchically paired exemplars, facilitating haze removal. Extensive experiments on public datasets, RESIDE, HazeRD, and DENSE-HAZE, demonstrate that HCD quantitatively outperforms the state-of-the-art methods in terms of PSNR, SSIM and achieves better visual quality.
translated by 谷歌翻译
与传统CS方法相比,基于深度学习(DL)的压缩传感(CS)已被应用于图像重建的更好性能。但是,大多数现有的DL方法都利用逐个块测量,每个测量块分别恢复,这引入了重建的有害阻塞效应。此外,这些方法的神经元接受场被设计为每一层的大小相同,这只能收集单尺度的空间信息,并对重建过程产生负面影响。本文提出了一个新的框架,称为CS测量和重建的多尺度扩张卷积神经网络(MSDCNN)。在测量期间,我们直接从训练有素的测量网络中获得所有测量,该测量网络采用了完全卷积结构,并通过输入图像与重建网络共同训练。它不必将其切成块,从而有效地避免了块效应。在重建期间,我们提出了多尺度特征提取(MFE)体系结构,以模仿人类视觉系统以捕获同一功能映射的多尺度特征,从而增强了框架的图像特征提取能力并提高了框架的性能并提高了框架的性能。影像重建。在MFE中,有多个并行卷积通道以获取多尺度特征信息。然后,将多尺度功能信息融合在一起,并以高质量重建原始图像。我们的实验结果表明,根据PSNR和SSIM,该提出的方法对最新方法的性能有利。
translated by 谷歌翻译
使用注意机制的深度卷积神经网络(CNN)在动态场景中取得了巨大的成功。在大多数这些网络中,只能通过注意图精炼的功能传递到下一层,并且不同层的注意力图彼此分开,这并不能充分利用来自CNN中不同层的注意信息。为了解决这个问题,我们引入了一种新的连续跨层注意传播(CCLAT)机制,该机制可以利用所有卷积层的分层注意信息。基于CCLAT机制,我们使用非常简单的注意模块来构建一个新型残留的密集注意融合块(RDAFB)。在RDAFB中,从上述RDAFB的输出中推断出的注意图和每一层直接连接到后续的映射,从而导致CRLAT机制。以RDAFB为基础,我们为动态场景Deblurring设计了一个名为RDAFNET的有效体系结构。基准数据集上的实验表明,所提出的模型的表现优于最先进的脱毛方法,并证明了CCLAT机制的有效性。源代码可在以下网址提供:https://github.com/xjmz6/rdafnet。
translated by 谷歌翻译
随着移动设备的快速开发,现代使用的手机通常允许用户捕获4K分辨率(即超高定义)图像。然而,对于图像进行示范,在低级视觉中,一项艰巨的任务,现有作品通常是在低分辨率或合成图像上进行的。因此,这些方法对4K分辨率图像的有效性仍然未知。在本文中,我们探索了Moire模式的删除,以进行超高定义图像。为此,我们提出了第一个超高定义的演示数据集(UHDM),其中包含5,000个现实世界4K分辨率图像对,并对当前最新方法进行基准研究。此外,我们提出了一个有效的基线模型ESDNET来解决4K Moire图像,其中我们构建了一个语义对准的比例感知模块来解决Moire模式的尺度变化。广泛的实验表明了我们的方法的有效性,这可以超过最轻巧的优于最先进的方法。代码和数据集可在https://xinyu-andy.github.io/uhdm-page上找到。
translated by 谷歌翻译