Anomaly detection in MRI is of high clinical value in imaging and diagnosis. Unsupervised methods for anomaly detection provide interesting formulations based on reconstruction or latent embedding, offering a way to observe properties related to factorization. We study four existing modeling methods, and report our empirical observations using simple data science tools, to seek outcomes from the perspective of factorization as it would be most relevant to the task of unsupervised anomaly detection, considering the case of brain structural MRI. Our study indicates that anomaly detection algorithms that exhibit factorization related properties are well capacitated with delineatory capabilities to distinguish between normal and anomaly data. We have validated our observations in multiple anomaly and normal datasets.
translated by 谷歌翻译
人脑解剖图像的专家解释是神经放射学的中心部分。已经提出了几种基于机器学习的技术来协助分析过程。但是,通常需要对ML模型进行培训以执行特定的任务,例如脑肿瘤分割或分类。相应的培训数据不仅需要费力的手动注释,而且人脑MRI中可以存在多种异常 - 甚至同时发生,这使得所有可能的异常情况都非常具有挑战性。因此,可能的解决方案是一种无监督的异常检测(UAD)系统,可以从健康受试者的未标记数据集中学习数据分布,然后应用以检测​​分布样本。然后,这种技术可用于检测异常 - 病变或异常,例如脑肿瘤,而无需明确训练该特定病理的模型。过去已经为此任务提出了几种基于变异的自动编码器(VAE)技术。即使它们在人为模拟的异常情况下表现良好,但其中许多在检测临床数据中的异常情况下表现较差。这项研究提出了“上下文编码” VAE(CEVAE)模型的紧凑版本,并结合了预处理和后处理步骤,创建了UAD管道(Strega)(Strega),该步骤对临床数据更强大,并显示其在检测到其检测方面的适用性脑MRI中的肿瘤等异常。 The proposed pipeline achieved a Dice score of 0.642$\pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$\pm$0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522$\pm$0.135 and 0.783$\ PM分别为0.111美元。
translated by 谷歌翻译
我们提出了一种用于测试使用吸收材料记录辐射电磁(EM)场的天线阵列的新方法,并使用条件编码器解码器模型通过AI评估所得到的热图像串。鉴于馈送到每个阵列元件的信号的功率和相位,我们能够通过我们训练的模型重建正常序列,并将其与热相机观察到的真实序列进行比较。这些热图仅包含低级模式,例如各种形状的斑点。然后,基于轮廓的异常检测器可以将重建误差矩阵映射到异常的分数,以识别故障的天线阵列,并将分类F量度(F-M)增加到46%。我们在天线测试系统收集的时间序列热量量表上展示了我们的方法。传统上,变形自身摩擦(VAE)学习观察噪声可以产生比具有恒定噪声假设的VAE更好的结果。然而,我们证明这不是对这种低级模式的异常检测的情况,有两个原因。首先,结合所学到的观察噪声的基线度量重建概率不能分化异常模式。其次,具有较低观察噪声假设的VAE的接收器操作特性(ROC)曲线下的区域比具有学习噪声的VAE高出11.83%。
translated by 谷歌翻译
当前的无监督异常定位方法依赖于生成模型来学习正常图像的分布,后来用于识别从重建图像上的错误中得出的潜在异常区域。但是,几乎所有先前的文献的主要局限性是需要使用异常图像来设置特定于类的阈值以定位异常。这限制了它们在现实的情况下的可用性,其中通常只能访问正常数据。尽管存在这一主要缺点,但只有少量作品通过在培训期间将监督整合到注意地图上,从而解决了这一限制。在这项工作中,我们提出了一种新颖的公式,不需要访问异常的图像来定义阈值。此外,与最近的工作相反,提出的约束是以更有原则的方式制定的,在约束优化方面利用了知名的知识。特别是,对先前工作中注意图的平等约束被不平等约束所取代,这允许更具灵活性。此外,为了解决基于惩罚的功能的局限性,我们采用了流行的对数栏方法的扩展来处理约束。最后,我们提出了一个替代正规化项,该项最大化了注意图的香农熵,从而减少了所提出模型的超参数量。关于脑病变细分的两个公开数据集的全面实验表明,所提出的方法基本上优于相关文献,为无监督病变细分建立了新的最新结果,而无需访问异常图像。
translated by 谷歌翻译
即使自动编码器(AES)具有无标签的学习紧凑表示的理想特性,并且已广泛应用于分布式(OOD)检测,但它们通常仍然很熟悉,并且在检测正常的异常值中被错误地使用并被错误地使用。异常分布是强烈重叠的。通常,假定学习的歧管包含关键信息,这对于描述训练分布中的样本很重要,并且离群值的重建导致较高的残余错误。但是,最近的工作表明,AE在重建某些类型的OOD样品方面可能会更好。在这项工作中,我们挑战了这一假设,并研究了自动编码器在提出两个不同任务时实际学习的内容。首先,我们提出了两个基于FR \'Echet Inception距离(FID)的指标和受过训练的分类器的置信度得分,以评估AES是否可以学习训练分布并可靠地识别其他领域的样本。其次,我们研究了AE是否能够在更具挑战性的肺病理检测任务上合成来自具有异常区域样本的正常图像。我们发现,最新的(SOTA)AES要么无法限制潜在的多种流形并允许重建异常模式,要么无法准确地从其潜伏分布中恢复输入,从而导致模糊或失误的重建。 。我们提出了新型的可变形自动编码器(morphaeus)来学习感知的全局图像先验,并根据估计的致密变形场局部适应其形态法。我们在检测OOD和病理学方面表现出优于无监督方法的卓越性能。
translated by 谷歌翻译
甚至在没有受限,监督的情况下,也提出了甚至在没有受限或有限的情况下学习普遍陈述的方法。使用适度数量的数据可以微调新的目标任务,或者直接在相应任务中实现显着性能的无奈域中使用的良好普遍表示。这种缓解数据和注释要求为计算机愿景和医疗保健的应用提供了诱人的前景。在本辅导纸上,我们激励了对解散的陈述,目前关键理论和详细的实际构建块和学习此类表示的标准的需求。我们讨论医学成像和计算机视觉中的应用,强调了在示例钥匙作品中进行的选择。我们通过呈现剩下的挑战和机会来结束。
translated by 谷歌翻译
在印刷电路板(PCB)的组装过程中,大多数误差是由表面安装装置(SMD)中的焊点引起的。在文献中,传统的特征提取基于方法需要设计手工制作的特征,并依赖于分层的RGB照明来检测焊接接头误差,而基于监督的卷积神经网络(CNN)的方法需要大量标记的异常样本(有缺陷的焊点)实现高精度。为了解决无限制环境中的光学检查问题,没有特殊的照明,没有无差错的参考板,我们提出了一种用于异常检测的新的Beta变化AutoEncoders(Beta-VAE)架构,可以在IC上工作和非IC组件。我们表明,拟议的模型学会了Disondled的数据表示,导致更独立的功能和改进的潜在空间表示。我们比较用于表征异常的激活和基于梯度的表示;并观察不同Beta参数对精度的影响,并在β-VAE中的特征表示中的影响。最后,我们表明,可以通过在没有指定的硬件或特征工程的直接正常样品上培训的模型来检测焊点上的异常。
translated by 谷歌翻译
We present a detailed study on Variational Autoencoders (VAEs) for anomalous jet tagging at the Large Hadron Collider. By taking in low-level jet constituents' information, and training with background QCD jets in an unsupervised manner, the VAE is able to encode important information for reconstructing jets, while learning an expressive posterior distribution in the latent space. When using the VAE as an anomaly detector, we present different approaches to detect anomalies: directly comparing in the input space or, instead, working in the latent space. In order to facilitate general search approaches such as bump-hunt, mass-decorrelated VAEs based on distance correlation regularization are also studied. We find that the naive mass-decorrelated VAEs fail at maintaining proper detection performance, by assigning higher probabilities to some anomalous samples. To build a performant mass-decorrelated anomalous jet tagger, we propose the Outlier Exposed VAE (OE-VAE), for which some outlier samples are introduced in the training process to guide the learned information. OE-VAEs are employed to achieve two goals at the same time: increasing sensitivity of outlier detection and decorrelating jet mass from the anomaly score. We succeed in reaching excellent results from both aspects. Code implementation of this work can be found at https://github.com/taolicheng/VAE-Jet
translated by 谷歌翻译
无监督的异常检测对于未来在大型数据集中搜索稀有现象的分析可能至关重要,例如在LHC收集的。为此,我们介绍了一个受到物理启发的变量自动编码器(VAE)体系结构,该体系结构在LHC奥运会机器学习挑战数据集中竞争性和稳健性。我们证明了如何将某些物理可观察物直接嵌入VAE潜在空间中,同时使分类器显然是不可知的,可以帮助识别和表征测得的光谱中的特征,这是由于数据集中存在异常而引起的。
translated by 谷歌翻译
我们提出了一种用于超声心动图视频的新型异常检测方法。引入的方法利用心脏周期的周期性来学习各种潜在轨迹模型(TVAE)的不同变体。对这些模型进行了对婴儿超声心动图视频内部数据集的健康样本的培训,这些数据集由多个室内视图组成,以了解健康人群的规范性。在推断期间,最大值基于后验(MAP)的异常检测以检测我们数据集中的分布样品。所提出的方法可靠地识别出严重的先天性心脏缺陷,例如Ebstein的异常或Shonecomplex。此外,它在检测肺动脉高压和右心室扩张的任务方面,通过标准变异自动编码器实现了优于基于地图的异常检测。最后,我们证明了所提出的方法通过热图提供了对其输出的可解释解释,该图突出了与异常心脏结构相对应的区域。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
在本文中,我们认为由于专家的昂贵的像素级注释以及大量未经发布的正常和异常图像扫描,近年来近年来引起了近年来越来越多的注意力的问题。我们介绍了一个分割网络,该分割网络利用对抗学习将图像分成两种切割,其中一个落入用户提供的参考分布。这种基于对抗的选择性切割网络(ASC-Net)桥接基于簇的深度分割和基于对抗基于对抗的异常/新奇检测算法的两个域。我们的ASC网络从正常和异常的医疗扫描中学到医疗扫描中的分段异常,没有任何掩盖的监督。我们在三个公共数据集中评估这一无监督的异常分段模型,即脑肿瘤细分的Brats 2019,肝脏病变分割和脑病变细分的MS-SEG 2015,以及脑肿瘤细分的私人数据集。与现有方法相比,我们的模型展示了无监督异常分段任务中的巨大性能增益。虽然与监督学习算法相比,仍有进一步提高性能的空间,但有希望的实验结果和有趣的观察揭示了使用用户定义的知识构建无监督学习算法的医疗异常识别。
translated by 谷歌翻译
异常检测是指识别偏离正常模式的观察,这是各个领域的活跃研究区域。最近,数据量表越来越多,复杂性和维度将传统的表示和基于统计的异常检测方法变得具有挑战性。在本文中,我们利用了高光谱图像异常检测的生成模型。 GIST是模拟正常数据的分布,而分布外样品可以被视为异常值。首先,研究了基于变分的基于异常的检测方法。理论上和经验地发现它们由于距离强烈的概念($ F $ -divergence)作为正则化而不稳定。其次,本文介绍了切片的Wasserstein距离,与F分歧相比,这是一种较弱的分布措施。然而,随机切片的数量难以估计真正的距离。最后,我们提出了一个投影的切片Wasserstein(PSW)基于AutoEncoder的异常筛选方法。特别是,我们利用计算友好的特征分解方法来找到切片高维数据的主成分。此外,我们所提出的距离可以用闭合形式计算,即使是先前的分布也不是高斯。在各种现实世界高光谱异常检测基准上进行的综合实验证明了我们提出的方法的卓越性能。
translated by 谷歌翻译
异常检测是确定不符合正常数据分布的样品。由于异常数据的无法获得,培训监督的深神经网络是一项繁琐的任务。因此,无监督的方法是解决此任务的常见方法。深度自动编码器已被广泛用作许多无监督的异常检测方法的基础。但是,深层自动编码器的一个显着缺点是,它们通过概括重建异常值来提供不足的表示异常检测的表示。在这项工作中,我们设计了一个对抗性框架,该框架由两个竞争组件组成,一个对抗性变形者和一个自动编码器。对抗性变形器是一种卷积编码器,学会产生有效的扰动,而自动编码器是一个深层卷积神经网络,旨在重建来自扰动潜在特征空间的图像。这些网络经过相反的目标训练,在这种目标中,对抗性变形者会产生用于编码器潜在特征空间的扰动,以最大化重建误差,并且自动编码器试图中和这些扰动的效果以最大程度地减少它。当应用于异常检测时,该提出的方法会由于对特征空间的扰动应用而学习语义上的富裕表示。所提出的方法在图像和视频数据集上的异常检测中优于现有的最新方法。
translated by 谷歌翻译
目前无监督的异常本地化方法依赖于生成模型来学习正常图像的分布,后来用于识别从重建图像上的误差导出的潜在的异常区域。然而,几乎所有先前文献的主要限制是需要采用异常图像来设置特定类阈值以定位异常。这限制了它们在现实方案中的可用性,通常可以访问正常数据。尽管存在这一重大缺点,但只有少数工程才能通过整合在培训期间对关注地图的监督来解决了这一限制。在这项工作中,我们提出了一种新的制定,不需要访问异常来定义阈值的图像。此外,与最近的工作相反,所提出的约束以更具原则的方式配制,利用了在约束优化中的知名知识。特别是,在现有工作中的注意图上的平等限制由不等式约束取代,这允许更灵活性。此外,为了解决基于惩罚的函数的限制,我们使用流行的日志屏障方法的扩展来处理约束。对流行的Brats'19数据集的综合实验表明,该方法的方法显着优于相关文献,为无监督的病变细分建立了新的最先进结果。
translated by 谷歌翻译
无监督的异常检测已成为一种流行的方法,可以检测医学图像中的病理,因为它不需要监督或标签进行训练。最常见的是,异常检测模型会生成输入映像的“正常”版本,而Pixel $ l^p $ - 两者的差异用于本地化异常。但是,大多数医学图像中存在的复杂解剖结构的不完善重建通常是由于不完善的重建而发生的。该方法还无法检测到没有与周围组织的强度差异很大的异常。我们建议使用特征映射功能解决此问题,该功能将输入强度图像转换为具有多个通道的空间,在该空间中可以沿着从原始图像提取的不同判别特征地图检测到异常。然后,我们使用结构相似性损失在该空间中训练自动编码器模型,该模型不仅考虑强度差异,而且考虑对比度和结构。我们的方法大大提高了大脑MRI的两个医学数据集的性能。代码和实验可从https://github.com/felime/feature-autoencoder获得
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
主体组件分析(PCA)在给定固定组件维度的一类线性模型的情况下,将重建误差最小化。概率PCA通过学习PCA潜在空间权重的概率分布,从而创建生成模型,从而添加了概率结构。自动编码器(AE)最小化固定潜在空间维度的一类非线性模型中的重建误差,在固定维度处胜过PCA。在这里,我们介绍了概率自动编码器(PAE),该自动编码器(PAE)使用归一化流量(NF)了解了AE潜在空间权重的概率分布。 PAE快速且易于训练,并在下游任务中遇到小的重建错误,样本质量高以及良好的性能。我们将PAE与差异AE(VAE)进行比较,表明PAE训练更快,达到较低的重建误差,并产生良好的样品质量,而无需特殊的调整参数或培训程序。我们进一步证明,PAE是在贝叶斯推理的背景下,用于涂抹和降解应用程序的贝叶斯推断,可以执行概率图像重建的下游任务的强大模型。最后,我们将NF的潜在空间密度确定为有希望的离群检测度量。
translated by 谷歌翻译
我们如何检测异常:也就是说,与给定的一组高维数据(例如图像或传感器数据)显着不同的样品?这是众多应用程序的实际问题,也与使学习算法对意外输入更强大的目标有关。自动编码器是一种流行的方法,部分原因是它们的简单性和降低维度的能力。但是,异常评分函数并不适应正常样品范围内重建误差的自然变化,这阻碍了它们检测实际异常的能力。在本文中,我们从经验上证明了局部适应性对具有真实数据的实验中异常评分的重要性。然后,我们提出了新颖的自适应重建基于错误的评分方法,该方法根据潜在空间的重建误差的局部行为来适应其评分。我们表明,这改善了各种基准数据集中相关基线的异常检测性能。
translated by 谷歌翻译