少量学习(FSL)旨在学习概括到具有有限培训样本的小型课程的模型。最近的作品将FSL推进一个场景,其中还提供了未标记的例子并提出半监督FSL方法。另一种方法还关心基类的性能,除了新颖的外,还建立了增量FSL方案。在本文中,我们在更现实但复杂的环境下概括了上述两个,通过半监督增量少量学习(S2 I-FSL)命名。为了解决任务,我们提出了一种包含两部分的新型范例:(1)一种精心设计的元训练算法,用于减轻由不可靠的伪标签和(2)模型适应机制来减轻基础和新颖类之间的模糊性,以学习歧视特征对于小说类,同时使用少数标记和所有未标记的数据保留基本知识。对标准FSL,半监控FSL,增量FSL的广泛实验,以及第一个构建的S2 I-FSL基准测试证明了我们提出的方法的有效性。
translated by 谷歌翻译
大多数现有的少量学习(FSL)方法都需要大量的元训练中标记数据,这是一个主要限制。为了减少标签的需求,已经为FSL提出了半监督的元训练设置,其中仅包括几个标记的样品和基础类别中的未标记样本数量。但是,此设置下的现有方法需要从未标记的集合中选择类吸引的样本选择,这违反了未标记集的假设。在本文中,我们提出了一个实用的半监督元训练环境,并使用真正的未标记数据。在新设置下,现有方法的性能显着下降。为了更好地利用标签和真正未标记的数据,我们提出了一个简单有效的元训练框架,称为基于元学习(PLML)的伪标记。首先,我们通过常见的半监督学习(SSL)训练分类器,并使用它来获取未标记数据的伪标记。然后,我们从标记和伪标记的数据中构建了几个射击任务,并在构造的任务上运行元学习以学习FSL模型。令人惊讶的是,通过在两个FSL数据集的广泛实验中,我们发现这个简单的元训练框架有效地防止了在有限的标记数据下FSL的性能降解。此外,从元培训中受益,提出的方法还改善了两种代表性SSL算法所学的分类器。
translated by 谷歌翻译
很少有射击分类旨在学习一个模型,该模型只有几个标签样本可用,可以很好地推广到新任务。为了利用在实际应用中更丰富的未标记数据,Ren等人。 \ shortcite {ren2018meta}提出了一种半监督的少数射击分类方法,该方法通过手动定义的度量标记为每个未标记的样本分配了适当的标签。但是,手动定义的度量未能捕获数据中的内在属性。在本文中,我们提出了a \ textbf {s} elf- \ textbf {a} daptive \ textbf {l} abel \ textbf {a} u摄孔方法,称为\ textbf {sala},用于半精神分裂的几个分类。萨拉(Sala)的主要新颖性是任务自适应指标,可以以端到端的方式适应不同任务的指标。萨拉(Sala)的另一个吸引人的特征是一种进步的邻居选择策略,该策略在整个训练阶段逐渐逐渐信心选择未标记的数据。实验表明,SALA优于在基准数据集上半监督的几种射击分类的几种最新方法。
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
大多数现有的工作在几次学习中,依赖于Meta-Learning网络在大型基础数据集上,该网络通常是与目标数据集相同的域。我们解决了跨域几秒钟的问题,其中基础和目标域之间存在大移位。与未标记的目标数据的跨域几秒识别问题在很大程度上在文献中毫无根据。启动是使用自我训练解决此问题的第一个方法。但是,它使用固定的老师在标记的基础数据集上返回,以为未标记的目标样本创建软标签。由于基本数据集和未标记的数据集来自不同的域,因此将基本数据集的类域中的目标图像投影,具有固定的预制模型可能是子最优的。我们提出了一种简单的动态蒸馏基方法,以方便来自新颖/基础数据集的未标记图像。我们通过从教师网络中的未标记图像的未标记版本的预测计算并将其与来自学生网络相同的相同图像的强大版本匹配来施加一致性正常化。教师网络的参数被更新为学生网络参数的指数移动平均值。我们表明所提出的网络了解可以轻松适应目标域的表示,即使它尚未在预先预测阶段的目标专用类别训练。我们的车型优于当前最先进的方法,在BSCD-FSL基准中的5次分类,3.6%的3.6%,并在传统的域名几枪学习任务中显示出竞争性能。
translated by 谷歌翻译
半监督的几次学习在于培训分类器以适应有限的标记数据和固定数量未标记的数据的新任务。已经开发了许多复杂的方法来解决该问题所包含的挑战。在本文中,我们提出了一种简单但相当有效的方法,可以从间接学习的角度预测未标记数据的准确伪标记,然后增强在几个拍摄分类任务中设置的极其标签受限的支持。我们的方法只能通过仅使用现成的操作来仅在几行代码中实现,但是它能够在四个基准数据集上超越最先进的方法。
translated by 谷歌翻译
少量分类需要调整从大型注释的基础数据集中学到的知识来识别新颖的看不见的类,每个类别由少数标记的示例表示。在这样的场景中,预先绘制大容量在大型数据集上的网络,然后在少数示例下向少量抵消导致严重的过度拟合。同时,在从大型标记数据集中学到的“冷冻”特征的顶部培训一个简单的线性分类器无法使模型调整到新型类的属性,有效地诱导底部。在本文中,我们向这两种流行的策略提出了一种替代方法。首先,我们的方法使用在新颖类上培训的线性分类器来伪标签整个大型数据集。这有效地“幻觉”在大型数据集中的新型类别,尽管基本数据库中未存在的新类别(新颖和基类是不相交的)。然后,除了在新型数据集上的标准交叉熵损失之外,它将在伪标记的基础示例上具有蒸馏损失的整个模型。这一步骤有效地训练了网络,识别对新型类别识别的上下文和外观提示,而是使用整个大规模基础数据集,从而克服了几次拍摄学习的固有数据稀缺问题。尽管这种方法的简单性,但我们表明我们的方法在四个成熟的少量分类基准上表现出最先进的。
translated by 谷歌翻译
从一个非常少数标记的样品中学习新颖的课程引起了机器学习区域的越来越高。最近关于基于元学习或转移学习的基于范例的研究表明,良好特征空间的获取信息可以是在几次拍摄任务上实现有利性能的有效解决方案。在本文中,我们提出了一种简单但有效的范式,该范式解耦了学习特征表示和分类器的任务,并且只能通过典型的传送学习培训策略从基类嵌入体系结构的特征。为了在每个类别内保持跨基地和新类别和辨别能力的泛化能力,我们提出了一种双路径特征学习方案,其有效地结合了与对比特征结构的结构相似性。以这种方式,内部级别对齐和级别的均匀性可以很好地平衡,并且导致性能提高。三个流行基准测试的实验表明,当与简单的基于原型的分类器结合起来时,我们的方法仍然可以在电感或转换推理设置中的标准和广义的几次射击问题达到有希望的结果。
translated by 谷歌翻译
新课程经常出现在我们不断变化的世界中,例如社交媒体中的新兴主题和电子商务中的新产品。模型应识别新的类,同时保持对旧类的可区分性。在严重的情况下,只有有限的新颖实例可以逐步更新模型。在不忘记旧课程的情况下识别几个新课程的任务称为少数类的课程学习(FSCIL)。在这项工作中,我们通过学习多相增量任务(limit)提出了一个基于元学习的FSCIL的新范式,该任务从基本数据集中综合了伪造的FSCIL任务。假任务的数据格式与“真实”的增量任务一致,我们可以通过元学习构建可概括的特征空间。此外,限制还基于变压器构建了一个校准模块,该模块将旧类分类器和新类原型校准为相同的比例,并填补语义间隙。校准模块还可以自适应地将具有设置对集合函数的特定于实例的嵌入方式化。限制有效地适应新课程,同时拒绝忘记旧课程。在三个基准数据集(CIFAR100,Miniimagenet和Cub200)和大规模数据集上进行的实验,即Imagenet ILSVRC2012验证以实现最新性能。
translated by 谷歌翻译
当许多松散相关的未标记数据可用并且稀缺标记的数据时,机器智能的范式从纯粹的监督学习转变为更实用的情况。大多数现有算法都假定基础任务分布是固定的。在这里,我们考虑了随着时间的推移,该任务分布中的一个更现实和具有挑战性的环境会不断发展。我们将这个问题称为半监督的元学习,并具有不断发展的任务分布,缩写为集合。在这种更现实的环境中出现了两个关键挑战:(i)在存在大量未标记的分发(OOD)数据的情况下,如何使用未标记的数据; (ii)如何防止由于任务分配转移而导致先前学习的任务分布的灾难性遗忘。我们提出了一种强大的知识和知识保留的半监督元学习方法(秩序),以应对这两个主要挑战。具体而言,我们的订单引入了一种新型的共同信息正则化,以使用未标记的OOD数据鲁棒化模型,并采用最佳的运输正规化来记住以前在特征空间中学习的知识。此外,我们在一个非常具有挑战性的数据集上测试我们的方法:大规模非平稳的半监督任务分布的集合,该任务分布由(至少)72K任务组成。通过广泛的实验,我们证明了拟议的订单减轻了忘记不断发展的任务分布,并且对OOD数据比相关的强基础更强大。
translated by 谷歌翻译
逐步学习新课程的能力对于所有现实世界的人工智能系统至关重要。像社交媒体,推荐系统,电子商务平台等的大部分高冲击应用都可以由图形模型表示。在本文中,我们调查了挑战但实际问题,图表几次拍摄的类增量(图形FCL)问题,其中图形模型是任务,以对新遇到的类和以前学习的类进行分类。为此目的,我们通过从基类循环地采样任务来提出图形伪增量学习范例,以便为我们的模型产生任意数量的培训集,以练习增量学习技能。此外,我们设计了一种基于分层的图形元学习框架,Hag-Meta。我们介绍了一个任务敏感的常规程序,从任务级关注和节点类原型计算,以缓解到新颖或基本类上的过度拟合。为了采用拓扑知识,我们添加了一个节点级注意模块来调整原型表示。我们的模型不仅达到了旧知识整合的更大稳定性,而且还可以获得对具有非常有限的数据样本的新知识的有利适应性。在三个现实世界数据集上进行广泛的实验,包括亚马逊服装,Reddit和DBLP,表明我们的框架与基线和其他相关最先进的方法相比,展示了显着的优势。
translated by 谷歌翻译
本文解决了新型类别发现(NCD)的问题,该问题旨在区分大规模图像集中的未知类别。 NCD任务由于与现实世界情景的亲密关系而具有挑战性,我们只遇到了一些部分类和图像。与NCD上的其他作品不同,我们利用原型强调类别歧视的重要性,并减轻缺少新颖阶级注释的问题。具体而言,我们提出了一种新型的适应性原型学习方法,该方法由两个主要阶段组成:原型表示学习和原型自我训练。在第一阶段,我们获得了一个可靠的特征提取器,该功能提取器可以为所有具有基础和新颖类别的图像提供。该功能提取器的实例和类别歧视能力通过自我监督的学习和适应性原型来提高。在第二阶段,我们再次利用原型来整理离线伪标签,并训练类别聚类的最终参数分类器。我们对四个基准数据集进行了广泛的实验,并证明了该方法具有最先进的性能的有效性和鲁棒性。
translated by 谷歌翻译
元学习已成为几乎没有图像分类的实用方法,在该方法中,“学习分类器的策略”是在标记的基础类别上进行元学习的,并且可以应用于具有新颖类的任务。我们删除了基类标签的要求,并通过无监督的元学习(UML)学习可通用的嵌入。具体而言,任务发作是在元训练过程中使用未标记的基本类别的数据增强构建的,并且我们将基于嵌入式的分类器应用于新的任务,并在元测试期间使用标记的少量示例。我们观察到两个元素在UML中扮演着重要角色,即进行样本任务和衡量实例之间的相似性的方法。因此,我们获得了具有两个简单修改的​​强基线 - 一个足够的采样策略,每情节有效地构建多个任务以及半分解的相似性。然后,我们利用来自两个方向的任务特征以获得进一步的改进。首先,合成的混淆实例被合并以帮助提取更多的判别嵌入。其次,我们利用额外的特定任务嵌入转换作为元训练期间的辅助组件,以促进预先适应的嵌入式的概括能力。几乎没有学习基准的实验证明,我们的方法比以前的UML方法优于先前的UML方法,并且比其监督变体获得了可比甚至更好的性能。
translated by 谷歌翻译
很少有射击学习(FSL)旨在通过利用基本数据集的先验知识来识别只有几个支持样本的新奇查询。在本文中,我们考虑了FSL中的域移位问题,并旨在解决支持集和查询集之间的域间隙。不同于以前考虑基础和新颖类之间的域移位的跨域FSL工作(CD-FSL),新问题称为跨域跨集FSL(CDSC-FSL),不仅需要很少的学习者适应新的领域,但也要在每个新颖类中的不同领域之间保持一致。为此,我们提出了一种新颖的方法,即Stabpa,学习原型紧凑和跨域对准表示,以便可以同时解决域的转移和很少的学习学习。我们对分别从域和办公室数据集构建的两个新的CDCS-FSL基准进行评估。值得注意的是,我们的方法的表现优于多个详细的基线,例如,在域内,将5-shot精度提高了6.0点。代码可从https://github.com/wentaochen0813/cdcs-fsl获得
translated by 谷歌翻译
Metric-based meta-learning is one of the de facto standards in few-shot learning. It composes of representation learning and metrics calculation designs. Previous works construct class representations in different ways, varying from mean output embedding to covariance and distributions. However, using embeddings in space lacks expressivity and cannot capture class information robustly, while statistical complex modeling poses difficulty to metric designs. In this work, we use tensor fields (``areas'') to model classes from the geometrical perspective for few-shot learning. We present a simple and effective method, dubbed hypersphere prototypes (HyperProto), where class information is represented by hyperspheres with dynamic sizes with two sets of learnable parameters: the hypersphere's center and the radius. Extending from points to areas, hyperspheres are much more expressive than embeddings. Moreover, it is more convenient to perform metric-based classification with hypersphere prototypes than statistical modeling, as we only need to calculate the distance from a data point to the surface of the hypersphere. Following this idea, we also develop two variants of prototypes under other measurements. Extensive experiments and analysis on few-shot learning tasks across NLP and CV and comparison with 20+ competitive baselines demonstrate the effectiveness of our approach.
translated by 谷歌翻译
在这项工作中,我们建议使用分布式样本,即来自目标类别外部的未标记样本,以改善几乎没有记录的学习。具体而言,我们利用易于可用的分布样品来驱动分类器,以避免通过最大化原型到分布样品的距离,同时最大程度地减少分布样品的距离(即支持,查询数据),以避免使用分类器。。我们的方法易于实施,不可知论的是提取器,轻量级,而没有任何额外的预训练费用,并且适用于归纳和跨传输设置。对各种标准基准测试的广泛实验表明,所提出的方法始终提高具有不同架构的预审计网络的性能。
translated by 谷歌翻译
Despite significant advances, the performance of state-of-the-art continual learning approaches hinges on the unrealistic scenario of fully labeled data. In this paper, we tackle this challenge and propose an approach for continual semi-supervised learning -- a setting where not all the data samples are labeled. An underlying issue in this scenario is the model forgetting representations of unlabeled data and overfitting the labeled ones. We leverage the power of nearest-neighbor classifiers to non-linearly partition the feature space and learn a strong representation for the current task, as well as distill relevant information from previous tasks. We perform a thorough experimental evaluation and show that our method outperforms all the existing approaches by large margins, setting a strong state of the art on the continual semi-supervised learning paradigm. For example, on CIFAR100 we surpass several others even when using at least 30 times less supervision (0.8% vs. 25% of annotations).
translated by 谷歌翻译
由顺序训练和元训练阶段组成的两阶段训练范式已广泛用于当前的几次学习(FSL)研究。这些方法中的许多方法都使用自我监督的学习和对比度学习来实现新的最新结果。但是,在FSL培训范式的两个阶段,对比度学习的潜力仍未得到充分利用。在本文中,我们提出了一个新颖的基于学习的框架,该框架将对比度学习无缝地整合到两个阶段中,以提高少量分类的性能。在预训练阶段,我们提出了特征向量与特征映射和特征映射与特征映射的形式的自我监督对比损失,该图形与特征映射使用全局和本地信息来学习良好的初始表示形式。在元训练阶段,我们提出了一种跨视图的情节训练机制,以对同一情节的两个不同视图进行最近的质心分类,并采用基于它们的距离尺度对比度损失。这两种策略迫使模型克服观点之间的偏见并促进表示形式的可转让性。在三个基准数据集上进行的广泛实验表明,我们的方法可以实现竞争成果。
translated by 谷歌翻译
在新课程训练时,几乎没有射击学习(FSL)方法通常假设具有准确标记的样品的清洁支持集。这个假设通常可能是不现实的:支持集,无论多么小,仍然可能包括标签错误的样本。因此,对标签噪声的鲁棒性对于FSL方法是实用的,但是这个问题令人惊讶地在很大程度上没有探索。为了解决FSL设置中标签错误的样品,我们做出了一些技术贡献。 (1)我们提供了简单而有效的特征聚合方法,改善了流行的FSL技术Protonet使用的原型。 (2)我们描述了一种嘈杂的噪声学习的新型变压器模型(TRANFS)。 TRANFS利用变压器的注意机制称重标记为错误的样品。 (3)最后,我们对迷你胶原和tieredimagenet的嘈杂版本进行了广泛的测试。我们的结果表明,TRANFS与清洁支持集的领先FSL方法相对应,但到目前为止,在存在标签噪声的情况下,它们的表现优于它们。
translated by 谷歌翻译
视觉变压器(VIT)的几乎没有射击的学习能力很少进行,尽管有很大的需求。在这项工作中,我们从经验上发现,使用相同的少数学习框架,例如\〜元基线,用VIT模型代替了广泛使用的CNN特征提取器,通常严重损害了几乎没有弹药的分类性能。此外,我们的实证研究表明,在没有归纳偏见的情况下,VIT通常会在几乎没有射击的学习方面学习低资格的令牌依赖性,在这些方案下,只有几个标记的培训数据可获得,这在很大程度上会导致上述性能降级。为了减轻这个问题,我们首次提出了一个简单而有效的几杆培训框架,即自我推广的监督(Sun)。具体而言,除了对全球语义学习的常规监督外,太阳还进一步预处理了少量学习数据集的VIT,然后使用它来生成各个位置特定的监督,以指导每个补丁令牌。此特定于位置的监督告诉VIT哪个贴片令牌相似或不同,因此可以加速令牌依赖的依赖学习。此外,它将每个贴片令牌中的本地语义建模,以提高对象接地和识别能力,以帮助学习可概括的模式。为了提高特定于位置的监督的质量,我们进一步提出了两种技术:〜1)背景补丁过滤以滤掉背景补丁并将其分配为额外的背景类别; 2)空间一致的增强,以引入足够的多样性以增加数据,同时保持生成的本地监督的准确性。实验结果表明,使用VITS的太阳显着超过了其他VIT的少量学习框架,并且是第一个获得比CNN最先进的效果更高的性能。
translated by 谷歌翻译